#### Warning

- Do not proceed to the assembly of the line while electrifying.
- Circuit & change components between entering shutting down the power supply and stopping showing CHARGE LED light of the Servo driver.
- The output of Servo drive [U, V, W] must NOT touch the AC power.

# Alert • Install the fan if the temperature around is too high while the Servo driver is installed in the Control Board. • Do not proceed to the Anti-Pressure-Test to the Servo driver. • Confirm the quick stop function is available before operate servo drive. • Matching up machine to change the user parameter setting before machine performs. If there is

## Safety proceeding:

Check the covering letter detail before installing, running, maintaining and examining. Furthermore, only the profession-qualified people can proceed to the line-assembly.

Safety proceeding in the covering letter discriminate between "Warning"&"Alert".

no according correct setting number, it could lead to out of control or breakdown.



Indicating the possibility dangerous situation. It could cause the death or serious damage if being ignored.



Indicating the possibility dangerous situation. It could cause smaller or lighter human injured and damage of equipment. Read this covering letter detail before using Servo driver.

First of all, thank you for using TED Servo Driver JADA Series ("TSTA" for short) and Servo Motors. TSTA can be controlled by digital board or PC, and provide excellent performance for a wide range of



applications and different requirement from customers.

Read this covering letter before using TSTA. Contents of the letter comprises:

- Servo System checking, installing and procedure of assembly line.
- Controller procedure for digital board, status displaying, unusual alarm and strategy explanation.
- Servo System control function, running testing and procedures adjusted.
- Explanation for all parameter of Servo Driver.
- Standard specification of TSTA Series.

In order to daily examine, maintain and understand the reason of unusual situation and handle strategy, please put this covering letter in safe place to read it anytime.

P.S: The end user should own this covering letter, in order to make the Servo Driver bring the best performance .



# Contents

| Chapter 1 Checking and Installing                |     |
|--------------------------------------------------|-----|
| 1-1 Checking Products                            | 1-1 |
| 1-1-1 Confirming with Servo Drives               | 1-1 |
| 1-1-2 Confirming with Servomotors                | 1-2 |
| 1-2 Appearance and Panel Board                   | 1-3 |
| 1-3 A Brief Introduction of Operation for Drives | 1-4 |
| 1-4 Conditions for Installation of Drives        | 1-5 |
| 1-4-1 Environmental Conditions                   | 1-5 |
| 1-4-2 Direction and Distance                     | 1-6 |
| 1-5 Conditions for Installation of Servomotors   | 1-7 |
| 1-5-1 Environmental Conditions                   | 1-7 |
| 1-5-2 Method of Installation                     | 1-7 |
| 1-5-3 Others                                     | 1-8 |

# Chapter 2 Wiring

| 2-1 Basi  | c Wiring for Servo System                         | 2-1  |
|-----------|---------------------------------------------------|------|
| 2-1-1     | Wiring for Main Circuit and Peripheral Devices    | 2-1  |
| 2-1-2     | Wiring for Servo Drives                           | 2-2  |
| 2-1-3     | Specifications of Wiring                          | 2-3  |
| 2-1-4     | Motor Terminal Layout                             | 2-4  |
| 2-1-5     | Typical Wiring for Motor and Main Circuit         | 2-6  |
| 2-1-6     | TB Terminal                                       | 2-7  |
| 2-1-7     | Wiring for Mechanical Brake                       | 2-8  |
| 2-2 I/O T | erminal                                           | 2-9  |
| 2-2-1     | Output Signals from the Servo pack                | 2-10 |
| 2-2-2     | Encoder Connector (CN2) Terminal Layout           | 2-23 |
| 2-3 Typic | al Circuit Wiring Examples                        | 2-25 |
| 2-3-1     | Position Control Mode (Pe Mode) (Line Driver).    | 2-25 |
| 2-3-2     | Position Control Mode (Pe Mode) (Open Collector). | 2-26 |
| 2-3-3     | Position Control Mode (Pi Mode)                   | 2-27 |
| 2-3-4     | Speed Control Mode (S Mode).                      | 2-28 |
| 2-3-5     | Torque Control Mode (T Mode).                     | 2-29 |
|           |                                                   |      |

# Chapter 3 Panel Operator / Digital Operator

| 3-1 Panel Operator on the Drives. | 3-1 |
|-----------------------------------|-----|
| 3-2 Signal Display.               | 3-6 |
| 3-2-1 Status Display              | 3-6 |
| 3-2-2 Diagnosis                   | 3-7 |

#### **Chapter 4 Trial Operation**

| 4-1 Trial Operation for Servomotor without Load.                    | 4-2 |
|---------------------------------------------------------------------|-----|
| 4-2 Trial Operation for Servomotor without Load from Host Reference | 4-5 |
| 4-3 Trial Operation with the Servomotor Connected to the Machine    | 4-9 |



# **Chapter 5 Control Functions**

| 5-1 Cont  | rol Mode Selection.                             | 5-1  |
|-----------|-------------------------------------------------|------|
| 5-2 Torqu | ue Mode                                         | 5-2  |
| 5-2-1     | Analog Ratio                                    | 5-3  |
| 5-2-2     | Adjusting the Reference Offset                  | 5-4  |
| 5-2-3     | Linear Acceleration and Deceleration            | 5-5  |
| 5-2-4     | Output Direction                                | 5-6  |
| 5-2-5     | Internal Torque Limit                           | 5-7  |
| 5-2-6     | Limiting Servomotor Speed during Torque Control | 5-7  |
| 5-2-7     | Additional Torque Control Functions             | 5-8  |
| 5-3 Spee  | d Mode                                          | 5-9  |
| 5-3-1     | Setting Parameters                              | 5-10 |
| 5-3-2     | Analog Ratio                                    | 5-11 |
| 5-3-3     | Adjusting the Reference Offset                  | 5-11 |
| 5-3-4     | Limiting Speed with Analog Reference            | 5-12 |
| 5-3-5     | Encoder Signal Output                           | 5-12 |
| 5-3-6     | Smoothing                                       | 5-14 |
| 5-3-7     | Definition of CW and CCW                        | 5-17 |
| 5-3-8     | Speed Loop Gain                                 | 5-18 |
| 5-3-9     | Notch Filter                                    | 5-19 |
| 5-3-10    | Limiting Servomotor Torque during Speed Control | 5-21 |
| 5-3-11    | Gain Switched                                   | 5-22 |
| 5-3-12    | Other Functions                                 | 5-29 |
| 5-4 Posit | ion Mode                                        | 5-31 |
| 5-4-1     | External Pulse Command                          | 5-32 |
| 5-4-2     | Internal Position Command                       | 5-34 |
| 5-4-3     | Electronic Gear                                 | 5-37 |
| 5-4-4     | Smoothing Acceleration                          | 5-41 |
| 5-4-5     | Definition of Direction                         | 5-42 |
| 5-4-6     | Gain Adjustment                                 | 5-42 |
| 5-4-7     | Deleting the Pulse Offset                       | 5-43 |
| 5-4-8     | Original Home                                   | 5-44 |
| 5-4-9     | Other Position Functions                        | 5-53 |
| 5-5 Gain  | Adjustment                                      | 5-54 |
| 5-5-1     | Automatic Adjusting                             | 5-57 |
| 5-5-2     | Manual Adjusting                                | 5-60 |
| 5-5-3     | Improving Resonance                             | 5-61 |
| 5-6 Othe  | r Functions                                     | 5-62 |
| 5-6-1     | Programmable I/O Functions                      | 5-62 |
| 5-6-2     | Switching Control Mode                          | 5-65 |
| 5-6-3     | Auxiliary Functions                             | 5-65 |
| 5-6-4     | Brake Mode                                      | 5-66 |
| 5-6-5     | Timing Diagram of Mechanical Brake              | 5-66 |
| 5-6-6     | CW/CCW Inhibit Function                         | 5-68 |



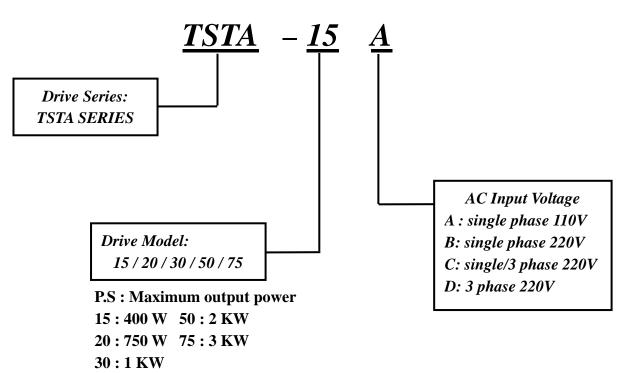
| 5-6-7 Selecting the External Regeneration Resistor |
|----------------------------------------------------|
| 5-6-8 Fan Setting                                  |
| 5-6-9 Analog Monitor                               |
| 5-6-10 Paramerter                                  |
| Chapter 6 Parameter Function                       |
| 6-1 Explanation of Parameter Group6-1              |
| 6-2 Parameter Display Table                        |
| Chapter 7 Communications Function                  |
| 7-1 RS232 & RS485                                  |
| 7-1-1 Communication wiring7-1                      |
| 7-1-2 RS232 Communication Protocol and Format7-2   |
| 7-1-3 Modbus communication protocol for RS-485     |
| 7-2 Communication Address table7-16                |
| Chapter 8 Troubleshooting                          |
| 8-1 Alarm Display Table                            |
| 8-2 Troubleshooting of Alarm and Warning8-3        |
| Chapter 9 Specifications                           |

| 9-1 Specifications and Dimension for Servo Drives | 9-1 |
|---------------------------------------------------|-----|
| 9-2 Specifications and Dimension for Servomotors  | 9-7 |
|                                                   |     |

| Appendix A | - Peripheral for S | ervo motors A | pp-1 |
|------------|--------------------|---------------|------|
|------------|--------------------|---------------|------|

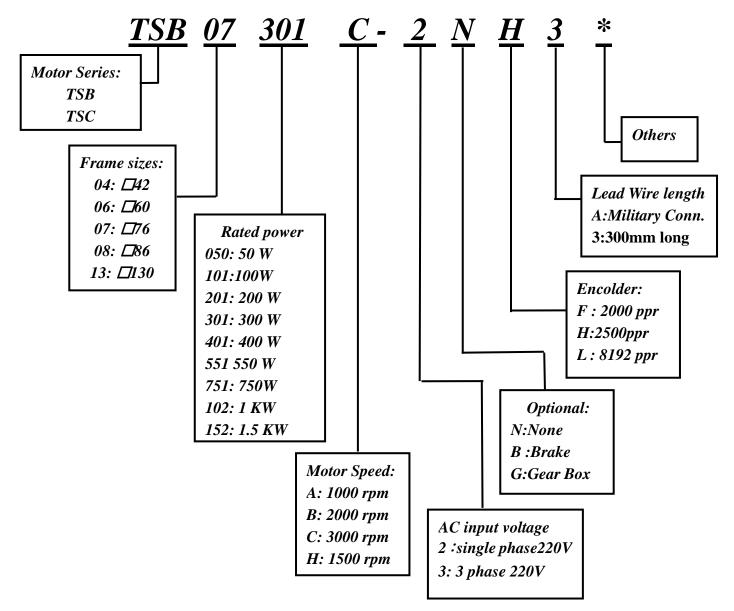


# **Chapter 1 Checking and Installing**


## **1-1 Checking Products**

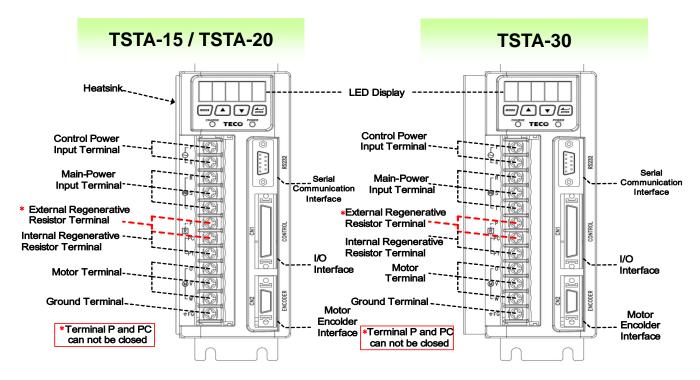
Our Servo Pack have already completely been functionally examined before leaving the factory. In order to protect the products from the damage during transportation, please check the items below before sealing off the pack:

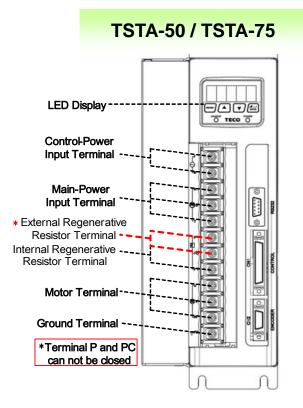
- Check if the models of servo driver and motor are the same with the models of ordering. (About the model explanation, please check the chapters below)
- Check if there are damage or scrape out side of the servo driver and motor. (If there is any damage during transportation, do not power ON)
- Check if there are any bad assembly or slipped component in the Servo Drive and Motor
- Check if the Motor's rotor and shaft can be rotated smoothly by hand (The Servo Motor with Mechanical-Brake can not be rotated directly)
- There must be the "QC"-seal in each servo drive, if not, please do not proceed Power ON.


If there is any bug or irregular under the situation above, please contact TED's Local sales representative or distributor instantly.

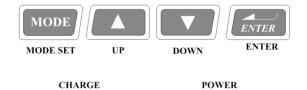
# 1-1-1 Confirming with Servo Drives







#### 1-1-2 Confirming with Servo Motors






#### 1-2 Appearance and Panel Board





Key Board





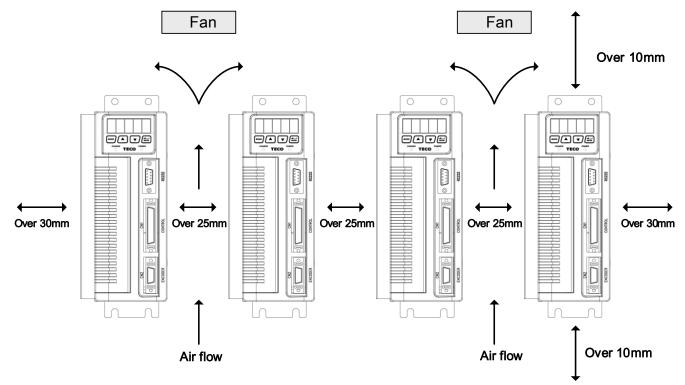
# **1-3 A Brief Introduction of Operation for Drives**

|        | Name                                            | Mode                | Explanation                                                                                                                                                                                                                                                               |
|--------|-------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Position Mode<br>(External Pulse<br>Command)    | Pe                  | Position control for the servo motor is achieved via an external pulse command. Position command is input from CN1.                                                                                                                                                       |
| Single | Position Mode<br>(Internal Position<br>Command) | Pi                  | Position control for the servo motor is achieved via by 16 commands stored within the servo controller. Execution of the 16 positions is via Digital Input signals.                                                                                                       |
| Mode   | Single<br>Mode<br>Speed Mode<br>Torque Mode     |                     | Speed control for the servo motor can be achieved via parameters set within the controller or from an external analog -10 ~ +10 Vdc command. Control of the internal speed parameters is via the Digital Inputs. A maximum of three steps speed can be stored internally. |
|        |                                                 |                     | Torque control for the servo motor can be achieved via parameters set or from an external analog -10 ~ +10 Vdc command.                                                                                                                                                   |
| 1      | Multiple Mode                                   | Pe-S<br>Pe-T<br>S-T | Pe and S can be switched by digital-input-contact-point.<br>Pe and T can be switched by digital-input-contact-point.<br>S and T can be switched by digital-input-contact-point.                                                                                           |

There are many kinds of control-mode. The detail modes display as fellow:



#### 1-4 Conditions for Installation of Drives


#### **1-4-1 Environmental Conditions**

The product should be kept in the shipping carton before installation. In order to retain the warranty coverage, the AC drive should be stored properly when it is not to be used for an extended period of time. Some storage suggestions are:

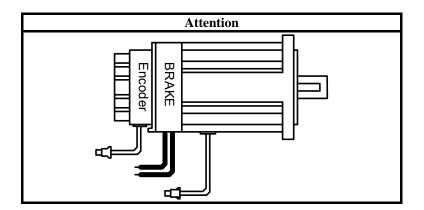
- Ambient Temperature: 0 ~ + 55 °C; Ambient Humidity: Under 85% RH (Under the condition of no frost).
- Stored Temperature: 20 ~ + 85 °C; Stored Humidity: Under 85%RH (Under the condition of no frost).
- Vibrating: Under 0.5 G.
- Do not mount the servo drive or motor in a location where temperatures and humidity will exceed specification.
- To avoid the insolation.
- To avoid the erosion of grease and salt.
- To avoid the corrosive gases and liquids.
- To avoid the invading of airborne dust or metallic particles.
- When over 1 Drives are installed in control panel, enough space have to be kept to get enough air to prevent the heat; the fan also must be installed, to keep the ambient temperature under 55 ℃.
- Please Install the drive in a vertical position, face to the front, in order to prevent the heat.
- To avoid the metal parts or other unnecessary things falling into the drive when installing.
- The drive must be stable by M5 screws.
- When there were the vibrating items nearby, please using vibration-absorber or installing anti-vibration- rubber, if the vibration can not be avoided.
- When there is any big-size magnetic switch, welding machines or other source of interference. Please install the filter. When the filter is installed, we must install the insulation transformer.



#### 1-4-2 Direction and Distance





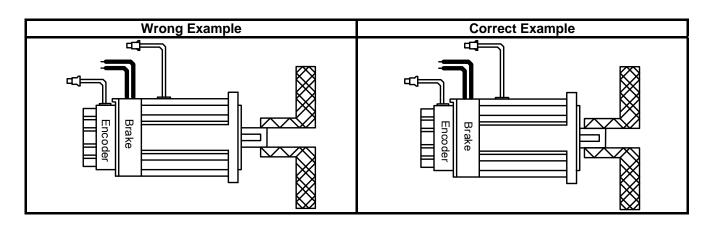

#### 1-5 Conditions for Installation of Servo Motors

#### 1-5-1 Environmental Conditions

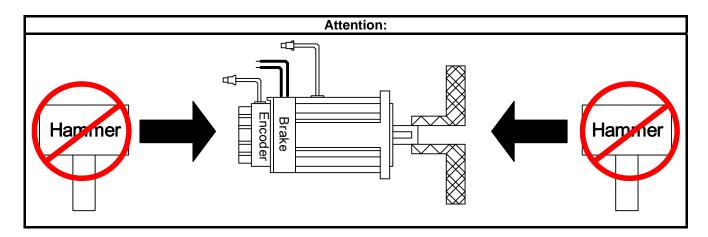
- Ambient Temperature: 0 ~ + 40  $^{\circ}$ C; Ambient humidity: Under 90% RH (No Frost).
- Storage Temperature: 20 ~ + 60 °C; Storage temperature: Under 90%RH (No Frost).
- Vibration: Under 2.5 G.
- In a well-ventilated and low humidity and dust location.
- Do not store in a place subjected to corrosive gases, liquids, or airborne dust or metallic particles.
- Do not mount the servo motor in a location where temperatures and humidity will exceed specification.
- Do not mount the motor in a location where it will be subjected to high levels of electromagnetic radiation.

#### 1-5-2 Method of Installation

1. Horizontal Install: Please let the cable-cavity downside to prevent the water or oil or other liquid flow into the servo motor.



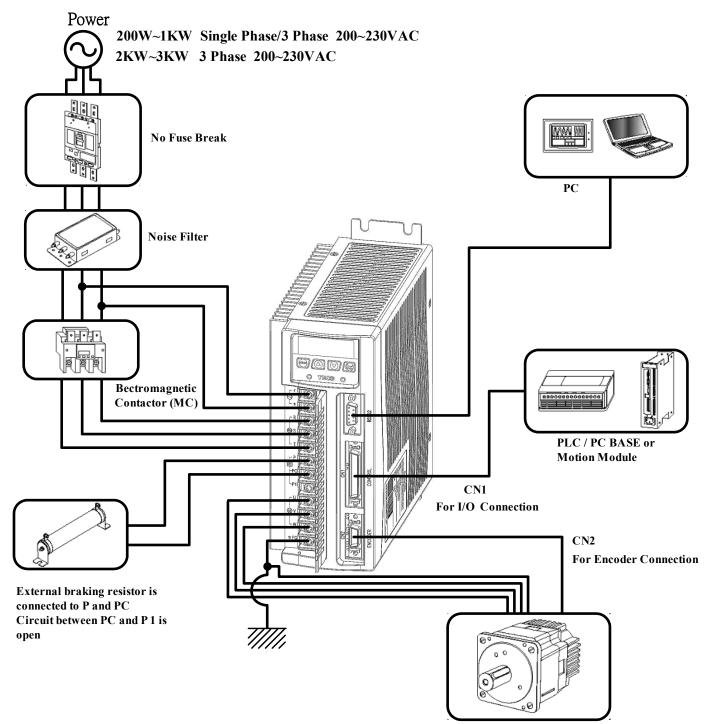

2. Vertical Install: If the motor shaft is side-up installed and mounted to a gear box, please pay attention to and avoid the oil leakage from the gear box.




#### 1-5-3 Notice for install motor

- 1. Please using oil-seal-motor to avoid the oil from reduction gear flowing into the motor through the motor shaft.
- 2. The cable need to be kept dry.
- 3. Please fixing the wiring cable certainly, to avoid the cable ablating or breaking.
- 4. The extending length of the shaft shall be enough, otherwise there will be the vibration from motor operating.




5. Please do not beat the motor when installing or taking it apart. Otherwise the shaft and the encoder of backside will be damaged.



Chapter 2 Wiring

## 2-1 Basic Wiring for Servo System

# 2-1-1 Wiring for Main Circuit and Peripheral Devices



Servo motor



#### 2-1-2 Wiring for Servo Drives

- The wire material must go by "Wiring Specifications."
- Wiring Length: Command Input Wire: Less than 3m.

Encoder Input Wire: Less than 20m.

The Wiring goes by the shortest length.

- Please wire according to the standard wiring schema. Don't connect if no using.
- Motor output terminal (U,V,W) must be connected correctly. Otherwise the servo motor will abnormally function.
- Shielded cable must be connected to FG terminal.
- Don't install the capacitor or Noise Filter at the output terminal of servo drive.
- At the control-output-signal relay, the direction of surge absorb diode must be correctly connected, otherwise it can not output signal, and cause the protect loop of emergency-stop abnormal.
- Please do these below to avoid the wrong operation from noise:

Please install devices such as the insulated transformer and noise filter at the input power.

Keep more than 30 cm between Power wire (power cable or motor cable...etc.) and signal cable, do not

install them in the same conduit.

- Please set "emergency-stop switch" to prevent abnormal operation.
- After wiring, check the connection-situation of each joint (ex: loose soldering, soldering point short, terminal order incorrect...etc.). Tighten the joints to confirm if surly connected to the servo drive, if the screw is tight. There can not be the situations such as cable break, cable pulled and dragged, or be heavily pressed.

\* Especially pay attention to the polarity between servo motor wiring and encoder.

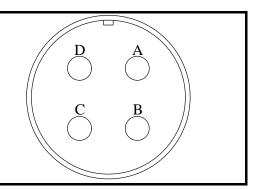
• There is no necessary to add extra regeneration resistance under general situation. If there is any need or problem, please connect to distributor or manufacturer.

#### 2-1-3 Specifications of Wiring

| Connection Terminal    |                      | Servo Drives and Wire Specifications                                                                              |                                                                                         |                                         |                                |                                |                                |  |
|------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------|--------------------------------|--------------------------------|--|
| Connection<br>Terminal | Mark<br>(Sign)       | Name of Connect<br>Terminal                                                                                       | TSTA-15                                                                                 | TSTA-20                                 | TSTA-30                        | TSTA-50                        | TSTA-75                        |  |
|                        | R, S, T              | Main Power Terminal                                                                                               | 2.0mm <sup>2</sup><br>A.W.G.14                                                          | 2.0mm <sup>2</sup><br>A.W.G.14          | 2.0mm <sup>2</sup><br>A.W.G.14 | 2.0mm <sup>2</sup><br>A.W.G.14 | 3.5mm <sup>2</sup><br>A.W.G.12 |  |
| ТВ                     | U, V, W              | Motor Terminal                                                                                                    | 2.0mm <sup>2</sup><br>A.W.G.14                                                          | 2.0mm <sup>2</sup><br>A.W.G.14          | 2.0mm <sup>2</sup><br>A.W.G.14 | 2.0mm <sup>2</sup><br>A.W.G.14 | 3.5mm <sup>2</sup><br>A.W.G.12 |  |
| Terminal               | Terminal             |                                                                                                                   | 1.25mm²<br>A.W.G.16                                                                     | 1.25mm²<br>A.W.G.16                     | 1.25mm²<br>A.W.G.16            | 1.25mm²<br>A.W.G.16            |                                |  |
| Ŧ                      | 1<br>FG              | Ground                                                                                                            | 2.0mm <sup>2</sup><br>A.W.G.14                                                          | 2.0mm <sup>2</sup><br>A.W.G.14          | 2.0mm <sup>2</sup><br>A.W.G.14 | 2.0mm <sup>2</sup><br>A.W.G.14 | 3.5mm <sup>2</sup><br>A.W.G.12 |  |
| Connect<br>Terminal    | Connect<br>Point No. | Connect Point Name                                                                                                | TSTA-15                                                                                 | TSTA-20                                 | TSTA-30                        | TSTA-50                        | TSTA-75                        |  |
|                        | 26,27,28             | Speed / Torque<br>Command Input                                                                                   |                                                                                         |                                         |                                |                                |                                |  |
|                        | 30,31                | Analog Monitor Output 1<br>& 2                                                                                    | 0.2mm <sup>2</sup> or 0.3mm <sup>2</sup> -> Twisted-pair-cable connecting to the Analog |                                         |                                |                                |                                |  |
|                        | 33,34                | Power Output +15V &<br>-15V                                                                                       | Grounding wire (including shield cable)                                                 |                                         |                                |                                |                                |  |
| CN1                    | 29,32,44             | Analog Ground Terminal                                                                                            |                                                                                         |                                         |                                |                                |                                |  |
| Joint<br>Control       | 1~13                 | General Analog Input                                                                                              | 0.2mm <sup>2</sup> or 0.3mm <sup>2</sup> -> Twisted-pair-cable connecting to the I/O    |                                         |                                |                                |                                |  |
| Signal                 | 18~25,43             | General Analog Output                                                                                             |                                                                                         |                                         |                                |                                |                                |  |
|                        | 45,46,<br>48,49      | 24V Power &<br>I/O Ground                                                                                         |                                                                                         | Grounding wire (including shield cable) |                                |                                |                                |  |
|                        | 14~17                | Position Command Input                                                                                            |                                                                                         |                                         |                                |                                |                                |  |
|                        | 35~40                | Encoder Signal Output                                                                                             | 0.2mm <sup>2</sup> or 0.3mm <sup>2</sup> -> Twisted-pair-cable (including shield cable) |                                         |                                |                                |                                |  |
| CN2                    | 1,2                  | Output 5V                                                                                                         |                                                                                         |                                         |                                |                                |                                |  |
| Joint of<br>motor      | 3,4                  | 4 Output Grounding wire of power supply 0.2mm <sup>2</sup> or 0.3mm <sup>2</sup> -> Twisted-pair-cable (including |                                                                                         |                                         |                                |                                | shield cable)                  |  |
| encoder                | 5~18                 | Encoder Signal Input                                                                                              |                                                                                         |                                         |                                |                                |                                |  |
| RS232                  | 2,3                  | Data transfer & receive                                                                                           |                                                                                         |                                         |                                |                                |                                |  |
| Joint of<br>Communic   | 5                    | Communication<br>grounding wire                                                                                   | 0.2mm <sup>2</sup> or (                                                                 | ).3mm ² -> Tw                           | visted-pair-cab                | ble (including s               | shield cable)                  |  |
| ation                  | 1,4,6,8              | Floating                                                                                                          |                                                                                         |                                         |                                |                                |                                |  |

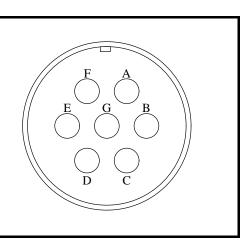
P.S.: 1. Please pay attention to the NFB and the capacity of noise filter when using multi ServoDrives.
2. CN1 ->50 Pins (3M Co.)
3. CN2 -> 20 Pins (3M Co.)
4. RS232 -> 9 Pins D-type Joint.

## 2-1-4 Motor Terminal Layout


## A Table of Motor-Terminal Wiring

(1) General Joint:

| Terminal Symbol    | Color       | Signal  |
|--------------------|-------------|---------|
| 1                  | Red         | U       |
| 2                  | White       | V       |
| 3                  | Black       | W       |
| 4                  | Green       | FG      |
| Brake control wire | Fine red    | DC +24V |
| DIAKE CONTO WIE    | Fine yellow | 0V      |

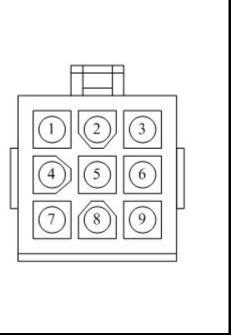

#### (2) Military Specifications Joint (No Brake):

| Terminal | Color | Signal |
|----------|-------|--------|
| A        | Red   | U      |
| В        | White | V      |
| С        | Black | W      |
| D        | Green | FG     |



(3)Military Specifications Joint(Brake):

| Terminal | Color       | Sig             | nal     |  |  |
|----------|-------------|-----------------|---------|--|--|
| В        | Red         | Red U           |         |  |  |
| G        | White       | N               | /       |  |  |
| Е        | Black       | V               | V       |  |  |
| С        | Green       | F               | G       |  |  |
| A        | Fine red    | BK control wire | DC +24V |  |  |
| F        | Fine yellow |                 | 0V      |  |  |

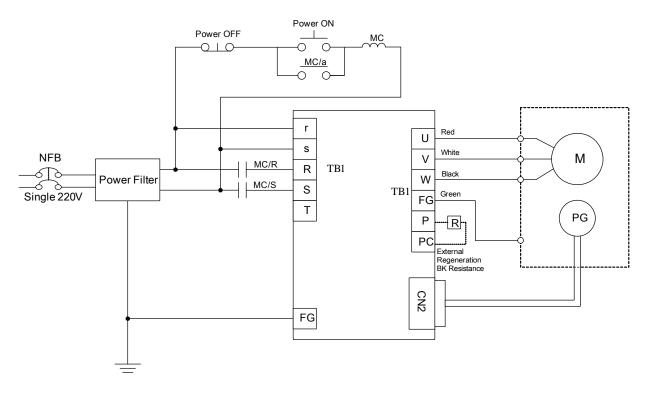




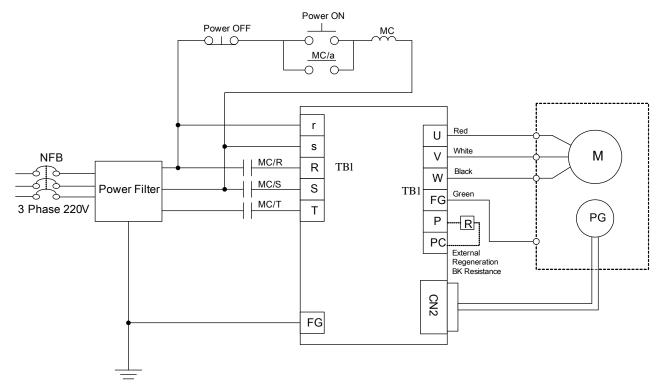

# Table of Motor-Encoder Wiring

(1)General Joint:

| Terminal Symbol | Color  | Signal |
|-----------------|--------|--------|
| 1               | White  | +5V    |
| 2               | Black  | 0V     |
| 3               | Green  | A      |
| 4               | Blue   | /A     |
| 5               | Red    | В      |
| 6               | Purple | /B     |
| 7               | Yellow | Z      |
| 8               | Orange | /Z     |
| 9               | Shield | FG     |




(2) Military Specifications Joint


| Terminal Symbol | Color  | Signal |
|-----------------|--------|--------|
| В               | White  | +5V    |
| I               | Black  | 0V     |
| A               | Green  | A      |
| С               | Blue   | /A     |
| Н               | Red    | В      |
| D               | Purple | /В     |
| G               | Yellow | Z      |
| E               | Orange | ΙZ     |
| F               | Shield | FG     |

#### 2-1-5 Typical Wiring for Motor and Main Circuit

#### \* The Wiring Example of Single Phase Main Power (Less than 1KW)

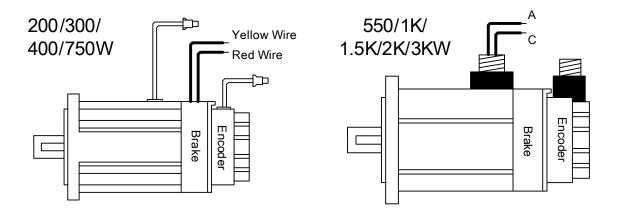


#### \* The Wiring Example of 3 Phase Main Power (More than 1KW)





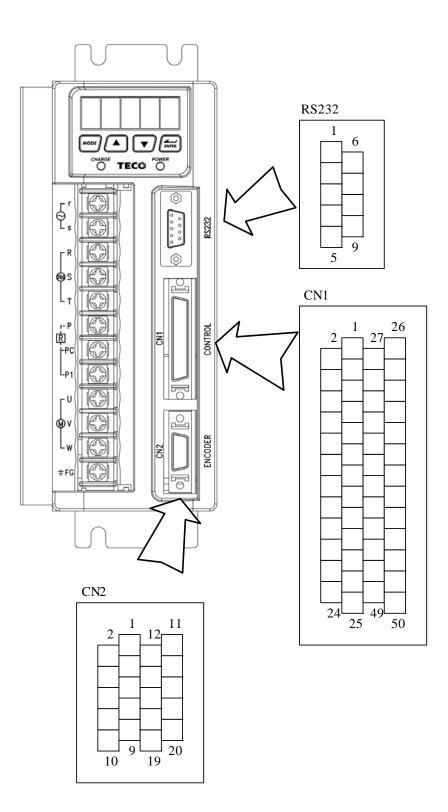
# 2-1-6 TB Terminal


| Name                                         | Terminal<br>Sign | Detail                                                                                                                                               |
|----------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control circuit power input                  | r                | Connecting to external AC Power.                                                                                                                     |
| terminal                                     | S                | Single Phase 200~230VAC +10 ~ -15% 50/60Hz ±5%                                                                                                       |
|                                              | R                |                                                                                                                                                      |
| Main circuit power input<br>terminal         | S                | Connecting to external AC Power.<br>Single / 3 Phase 200~230VAC   +10 ~ -15%   50/60Hz ±5%                                                           |
|                                              | Т                |                                                                                                                                                      |
| External regeneration resistance terminal    | Р                | Please refer to <b>Cn012</b> to see resistance value, when using external regeneration resistance. After installing regeneration resistance, set the |
| Regeneration terminal common point           | PC               | resistance power in Cn012.<br>*If NOT using external regeneration resistance, PC-P1 is a short<br>circuit, do not connect P terminal.                |
| Internal regeneration<br>resistance terminal | P1               | *When using external regeneration, equip regeneration resistance<br>between PC-P, do not connect P1 terminal.                                        |
|                                              | U                | Motor terminal wire is <b>red</b>                                                                                                                    |
| Motor-power output<br>terminal               | V                | Motor terminal wire is <b>white</b>                                                                                                                  |
|                                              | W                | Motor terminal wire is <b>black</b>                                                                                                                  |
| Motor-case grounding<br>terminal             | FG               | Motor terminal wire is <b>green or yellow-green.</b>                                                                                                 |



#### 2-1-7 Wiring for Mechanical Brake

Release BRAKE:


- 200/300/400/750W series: Use Red wire and yellow wire connecting to DC +24V voltage(**No polarity**)
- 550/1K/1.5K/2K/3KW series: BK outputs from A & C of **Motor Power Joint**, servo motor can operate normally after releasing the brake.





#### 2-2 I/O Terminal

There are 3 groups of I/O terminal, which contain RS232 communication terminal, CN1 control signal terminal and CN2 encoder terminal. The diagram below displays all positions for the terminal.





## 2-2-1 Output Signals from the Servopack

(1) Diagram of CN1 Terminal:

|                    |       | (                                   | 1  |         |                                      |    |       |                                                     |    |       |                                  |
|--------------------|-------|-------------------------------------|----|---------|--------------------------------------|----|-------|-----------------------------------------------------|----|-------|----------------------------------|
| Position<br>Number | Name  | Function                            | 1  | DI-1    | SON ON                               |    |       |                                                     | 26 | SIN   | Speed/Torque                     |
| 2                  | DI-2  | ALRS                                | 1  |         |                                      | 27 | PIC   | Torque Control<br>Speed Limit /CCW<br>Command Limit | 20 |       | Analog<br>Command Input          |
| 4                  | DI-4  | CCWL                                | 3  | DI-3    | PCNT<br>PI/P Switch                  | 29 | AG    | Analog Signal                                       | 28 | NIC   | CW Torque<br>Command Limit       |
|                    |       |                                     | 5  | DI-5    | CWL                                  |    |       | Ground Terminal                                     | 30 | MON1  | Analog Monitor<br>Output 1       |
| 6                  | DI-6  | TLMT                                | 7  | DI-7    | CLR                                  | 31 | MON2  | Analog Monitor<br>Output 2                          | 32 | AG    | Analog Signal                    |
| 8                  | DI-8  | LOK                                 |    |         |                                      | 33 | +15V  | +15V PW output                                      |    |       | Ground Terminal                  |
| 10                 | DI-10 | SPD1                                | 9  | DI-9    | EMC                                  | 35 | PA    | Encoder output<br>A Phase                           | 34 | -15V  | -15V PW Output                   |
|                    |       |                                     | 11 | DI-11   | SPD2                                 |    |       |                                                     | 36 | /PA   | Encoder Output/<br>A Phase       |
| 12                 | DI-12 | MDC                                 | 13 | DI-13   | SPDINV                               | 37 | PB    | Encoder output<br>B Phase                           | 38 | /PB   | Encoder Output /                 |
| 14                 | Pulse | Position Pulse<br>Command Input(+)  |    |         | Position Pulse                       | 39 | PZ    | Encoder output<br>Z Phase                           |    |       | B Phase                          |
| 16                 | Sign  | Position Symbol<br>Command Input(+) | 15 | / Pulse | Command Input(-)                     | 41 | OPC   | Open Collector<br>Position Command<br>PW Input      | 40 | /PZ   | Encoder Output /<br>Z Phase      |
|                    |       | RDY                                 | 17 | /Sign   | Position Symbol<br>Command Input (-) |    |       | Home Signal                                         | 42 | —     |                                  |
| 18                 | DO-1  | Servo Ready                         | 19 | DO-2    | ALM                                  | 43 | ZO    | Output                                              | 44 | AG    | Analog Signal<br>Ground Terminal |
| 20                 | DO-3  | Zero Speed                          |    |         |                                      | 45 | IP24  | +24V PW Output                                      |    | 10.24 | +24 V PW                         |
| 22                 | DO-5  | Torque Limit(LM)/<br>ALRS Code0(A0) | 21 | DO-4    | INP                                  | 47 | DICOM | DI PW<br>Command Point                              | 46 | IG24  | Ground Terminal                  |
|                    | DO 7  | Drive Limit(ST)/                    | 23 | DO-6    | PC / (A1)                            | 40 | 1024  | +24 PW                                              | 48 | IG24  | +24V PW<br>Ground Terminal       |
| 24                 | DO-7  | ALRS Code2(A2)                      | 25 | DO-8    | BASE BLOCK/<br>(A3)                  | 49 | IG24  | ground terminal                                     | 50 | FG    | Shielded Wire<br>Grounding       |

#### P.S.:

1. If there is unused terminal, please do not connect it or let it be the relay terminal.

2. The Shielded Wire of I/O cable should connect to the ground.



#### (2) CN1 Signal Name and Explanation:

#### (a) General I/O Signal:

Explanation of General I/O Signal Function

| Signal                                                                 | Function<br>Symbol | Pin No. | Wired<br>Mode | Signal                           | Function<br>Symbol | Pin No.  | Wired<br>Mode |
|------------------------------------------------------------------------|--------------------|---------|---------------|----------------------------------|--------------------|----------|---------------|
| Position Pulse                                                         | Pulse              | 14      |               | Encoder Output<br>A-Phase        | РА                 | 35       |               |
| Command Input                                                          | /Pulse             | 15      | 103           | Encoder Output / A<br>Phase      | /PA                | 36       |               |
| Position Symbol                                                        | Sign               | 16      | 100           | Encoder Output<br>B-Phase        | PB                 | 37       | 104           |
| Command Input                                                          | /Sign              | 17      |               | Encoder Output<br>/B-Phase       | /PB                | 38       | 101           |
| Open Collector<br>Position Command                                     | OPC                | 41      | 103           | Encoder Output<br>Z-Phase        | PZ                 | 39       |               |
| Power Input.                                                           | ••••               |         |               | /Z-Phase                         | /PZ                | 40       |               |
| Speed / Torque<br>Analog Command                                       | SIN                | 26      |               | Analog Signal<br>Ground Terminal | AG                 | 29,32,44 |               |
| Input                                                                  | Unit               | 20      |               | +15Vdc Output<br>Terminal        | +15V               | 33       |               |
| Torque Control Speed<br>Limit Command /<br>CCW Torque<br>Command Limit | PIC                | 27      | IO5           | -15Vdc Output<br>Terminal        | -15V               | 34       |               |
| CW Torque<br>Command Limit                                             | NIC                | 28      |               | Digital input Com<br>Terminal    | DICOM              | 47       |               |
| Analog Monitor<br>Output 1                                             | MON1               | 30      | 106           | +24Vdc Output                    | IP24               | 45       |               |
| Analog Monitor<br>Output 2                                             | MON2               | 31      | IO6           | +24Vdc Com<br>Terminal           | IG24               | 46,48,49 |               |
| Home Signal Output                                                     | ZO                 | 43      | IO2           | Shielded Wire<br>Connect Point   | FG                 | 50       |               |

# Explanation of General I/O Signal Function

| Signal Name                                  | Function<br>Symbol | Mode | I/O Operation and Function                                                                                                                                                                                        | Chapter                          |  |  |  |  |
|----------------------------------------------|--------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|--|
| Position Pulse                               | Pulse              |      | The Driver can receive 3 kinds of Command below:                                                                                                                                                                  |                                  |  |  |  |  |
| Command Input                                | /Pulse             |      | . (Pulse)+ (Sign)                                                                                                                                                                                                 |                                  |  |  |  |  |
| Position Sign                                | Sign               | Pe   | . (CCW)/ (CW)Pulse                                                                                                                                                                                                |                                  |  |  |  |  |
| Command Input                                | /Sign              | -    | . AB Phase pulse                                                                                                                                                                                                  |                                  |  |  |  |  |
| Open Collect<br>Position Command<br>PW Input | OPC                | Ре   | When open collect input in position command, <b>OPC</b> and <b>IP24</b> can be close, and using internal <b>24V</b> power and resistor.                                                                           | _                                |  |  |  |  |
| Speed Analog<br>command Input                | SIN                | S    | In Speed Mode, when external speed command is operated at SPD1=0, SPD2=0, input the voltage range: <b>-10V~+10V</b> , <b>Sn216</b> can be set input voltage: ±10V's Motor output speed.                           | 5-3-1<br>5-3-2<br>5-3-3<br>5-3-4 |  |  |  |  |
| Torque Analog<br>Command Input               |                    | Т    | In Torque Mode, input the voltage range <b>-10~+10V</b> , <b>Tn103</b> can be set input voltage ±10V's motor output torque.                                                                                       | 5-2-1<br>5-2-2                   |  |  |  |  |
| Torque Control<br>Speed Limit<br>Command     |                    | Т    | In Torque Mode, when external speed limit is operated at input connect point <b>SPD1=0 &amp; SDP2=0(P.S)</b> , input voltage range: <b>0~+10V</b> , 10V's speed limit stands for motor's ratio speed.             | 5-2-6                            |  |  |  |  |
| CCW Torque Limit<br>Command                  | PIC                | S    | In Speed Mode, when external torque limit is be used at input connect point <b>TLMT=1(P.S.)</b> , input voltage range: <b>0~+10V</b> , to input 10V will limit the motor CCW torque having 300% of ratio torque.  | 5-3-10                           |  |  |  |  |
| CW Torque Limit<br>Command                   | NIC                | S    | In Speed Mode, when external torque limit is be used at input connect point <b>TLMT=1(P.S.)</b> , input voltage range: <b>-10~0V</b> , to input -10V will limit the motor CW torque have 300% of ratio torque.    | 5-3-10                           |  |  |  |  |
| Analog Monitor<br>Output 1                   | MON1               | ALL  | Operating the motor to control the current speed to transform<br>the voltage output in accordance with the rate (±10V/1.5 times<br>ratio speed) CCW stands for positive voltage, CW negative<br>voltage.          | 5-6-9                            |  |  |  |  |
| Analog Monitor<br>Output 2                   | MON2               | ALL  | Operating the motor to control the current torque to transform<br>the voltage output in accordance with the rate (±10V/3.5 times<br>ratio torque) CCW torque stands for positive voltage, CW<br>negative voltage. | 5-6-9                            |  |  |  |  |
| Encoder Output A<br>Phase                    | PA                 |      |                                                                                                                                                                                                                   |                                  |  |  |  |  |
| Encoder Output / A<br>Phase                  | /PA                |      | Outputting the Motor Encoder Signal through pulse per rotation                                                                                                                                                    |                                  |  |  |  |  |
| Encoder Output B<br>Phase                    | РВ                 | ALL  | handle. The pulse quantity of every rotating can be set in <b>Cn005</b> .                                                                                                                                         | 5-3-5                            |  |  |  |  |
| Encoder Output / B<br>Phase                  | /PB                |      | When "1" is set in <b>Cn004</b> , it is CCW rotation from the motor load terminal direction, and A Phase gets 90 degree ahead B Phase.                                                                            | 0-0-0                            |  |  |  |  |
| Encoder Output Z<br>Phase                    | PZ                 |      | Signal Output is Line Driver.                                                                                                                                                                                     |                                  |  |  |  |  |
| Encoder Output / Z<br>Phase                  | /PZ                |      |                                                                                                                                                                                                                   |                                  |  |  |  |  |
| Home Signal<br>Output                        | ZO                 | ALL  | Z Phase Open Collector output connect point.                                                                                                                                                                      |                                  |  |  |  |  |
| Analog Signal<br>Ground Terminal             | AG                 | ALL  | Analog signal grounding: CN1 - > Pin 26、27、28、30、31、<br>33、34.                                                                                                                                                    | —                                |  |  |  |  |
| +15V PW Output<br>Terminal                   | +15V               | ALL  | To provide ±15V output power (Max. 10mA), which can be used in servo drive – external voltage command. <b>Suggestion: Using</b>                                                                                   |                                  |  |  |  |  |
| -15V PW Output<br>Terminal                   | -15V               | ALL  | the variable resistance which is more than $3k\Omega$ .                                                                                                                                                           |                                  |  |  |  |  |

| Signal Name                    | Function<br>Symbol | Mode | I/O Operation and Function                      | Chapter |  |
|--------------------------------|--------------------|------|-------------------------------------------------|---------|--|
| DI PW Conmen<br>Terminal       | DICOM              | ALL  | Digital input power supplement common terminal. | —       |  |
| +24V PW Output                 | IP24               | ALL  | +24V power output terminal(Max. 0.2A).          |         |  |
| +24V PW Ground<br>Terminal     | IG24               | ALL  | +24V power grounding terminal                   | _       |  |
| Shielded Wire<br>Connect Point | FG                 | ALL  | Connect to Shield wire of signal cable.         | —       |  |

**P.S.:** "1" stands for "close loop with **IG24**"; "0" stands for "open loop with **IG24**". PW is abbreviation of Power

#### (b) Digital I/O Signal:

For many kinds of application, the digital input/output terminal layout of all operation mode are accordingly

different. In order to provide more functions, our drives can provide multi terminal layout settings. Users can set these

functions for application.

Digital input terminal layout provides 13 (**Pin1~13**) programmable terminal; digital output terminal provides 4 (**Pin18~2**1) programmable terminals. The diagram below shows the default digital input/output terminal placement and functions. Please refer to 5-6-1 to check related parameters setting.

| Signal                       |      | Function<br>Sign | Pin<br>No. | Wired<br>Mode | Signal                                        |       | Function<br>Sign | Pin<br>No. | Wired<br>Mode |
|------------------------------|------|------------------|------------|---------------|-----------------------------------------------|-------|------------------|------------|---------------|
| Servo ON                     | DI-1 | SON              | 1          |               | Servo Lock                                    | DI-8  | LOK              | 8          |               |
| Alarm reset                  | DI-2 | ALRS             | 2          |               | Emergency<br>Stop                             | DI-9  | EMC              | 9          |               |
| PI/P Switch                  | DI-3 | PCNT             | 3          |               | Internal speed<br>command /<br>Limit select 1 | DI-10 | SPD1             | 10         |               |
| CCW<br>Operation Limit       | DI-4 | CCWL             | 4          | IO1           | Internal speed<br>command /<br>Limit select 2 | DI-11 | SPD2             | 11         | IO1           |
| CW<br>Operation Limit        | DI-5 | CWL              | 5          |               | Control Mode<br>Switch                        | DI-12 | MDC              | 12         |               |
| External Torque<br>Limit     | DI-6 | TLMT             | 6          |               | Reverse<br>Direction<br>Speed<br>Command      | DI-13 | SPDINV           | 13         |               |
| Pulse error<br>amount delete | DI-7 | CLR              | 7          |               |                                               |       |                  |            |               |

**Default Digital Input Terminal placement Functions and Wired Mode** 

#### **Default Digital Input Terminal Layout Functions and Wired Mode**

| Signal       |      | Function<br>Sign | Pin<br>No. | Wired<br>Mode | Signal                            |      | Function<br>Sign | Pin<br>No. | Wired<br>Mode |
|--------------|------|------------------|------------|---------------|-----------------------------------|------|------------------|------------|---------------|
| Servo ready  | DO-1 | RDY              | 18         |               | Torque limit/<br>Alarm code A0    | DO-5 | LM/A0            | 22         |               |
| Alarm        | DO-2 | ALM              | 19         | 100           | P action /<br>Alarm code A1       | DO-6 | PC/A1            | 23         | 102           |
| Zero speed   | DO-3 | ZS               | 20         | IO2           | Operation limit/<br>Alarm code A2 | DO-7 | ST/A2            | 24         | 102           |
| Fix position | DO-4 | INP              | 21         |               | Base Block/<br>Alarm code A3      | DO-8 | BB/A3            | 25         |               |



# **Digital Input Function**

(Except CCWL and CWL are high electric potential, other terminal layout are low electric potential. Please refer to 5-6-1 to see related parameters)

| Signal Name                                   | Function<br>Sign | Mode    | I/O Function                                                                                                                                                                                                                   | Chapter                 |                                                                        |  |  |  |  |  |
|-----------------------------------------------|------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|--|--|--|--|--|
| Servo On                                      | SON              | ALL     | <b>SON</b> and <b>IG24</b> close loop: Servo <b>ON</b> ; <b>SON</b> and <b>IG24</b> open loop:<br>Servo OFF. Attention: Before power on, the input connect point<br><b>SON</b> (servo on) can not be operated to avoid danger. | 5-6-3<br>5-6-4          |                                                                        |  |  |  |  |  |
| Abnormal Reset                                | ALRS             | ALL     | ALRS and IG24 close loop: Relieving the stop-situation from of<br>abnormality. But the abnormality of encoder or memory will<br>cause the same alarm again. Please reset power after the<br>abnormality is eliminated.         | 8-1                     |                                                                        |  |  |  |  |  |
| PI/P switch                                   | PCNT             | Pi/Pe/S | <b>PCNT</b> and <b>IG24</b> close loop will cause the speed loop control transforming to ratio control from ratio integration control.                                                                                         | 5-3-11                  |                                                                        |  |  |  |  |  |
| CCW<br>Operation limit                        | CCWL             | ALL     | Connect to CCW over travel detector: CCWL and IG24 close loop; open loop with IG24 -> CCW over travel operates.                                                                                                                | 5-4-8<br>5-6-3<br>5-6-4 |                                                                        |  |  |  |  |  |
| CW<br>Operation limit                         | CWL              | ALL     | Connect to CW over travel detector: CWL and IG24 close loop;<br>open loop with IG24 -> CW over travel operates.                                                                                                                | 5-4-8<br>5-6-3<br>5-6-4 |                                                                        |  |  |  |  |  |
| External torque<br>limit                      | TLMT             | Pi/Pe/S | <b>TLMT</b> and <b>IG24</b> close loop will cause the motor-output-torque-limit to stay in the command-voltage range of torque-limit-terminal-layout ( <b>PIC</b> , <b>NIC</b> ).                                              | 5-3-10                  |                                                                        |  |  |  |  |  |
| Pulse error<br>amount delete                  | CLR              | Pi/Pe   | When <b>CLR</b> and <b>IG24</b> close loop, delete the pulse amount in the Position Error Counter.                                                                                                                             |                         |                                                                        |  |  |  |  |  |
| Servo lock                                    | LOK              | S       | When <b>LOK</b> and <b>IG24</b> close loop will transform speed control mode nto position control mode in order to lock the motor at the last position.                                                                        |                         |                                                                        |  |  |  |  |  |
| Emergency stop                                | EMC              | ALL     | When <b>EMC</b> and <b>IG24</b> close loop: Emergency stop -> Servo Off and<br>exit the rotating statue, and Cn008 will decide if the dynamic Brake<br>operates.                                                               |                         |                                                                        |  |  |  |  |  |
|                                               |                  |         | Snood Snood Limit                                                                                                                                                                                                              |                         |                                                                        |  |  |  |  |  |
| Internal anod                                 |                  |         |                                                                                                                                                                                                                                |                         | SPD2SPD1SpeedSpeed LimitCommandCommandCommand(Speed Mode)(Torque Mode) |  |  |  |  |  |
| Internal speed<br>command / limit<br>select 1 | SPD1             | S/T     | 0 0 External<br>command(SIN) External limit(PIC)                                                                                                                                                                               | 5-2-6                   |                                                                        |  |  |  |  |  |
| Internal speed<br>command / limit             | SPD2             |         | 0 1 Sn201 Tn105                                                                                                                                                                                                                | 5-3-1                   |                                                                        |  |  |  |  |  |
| select 2                                      |                  |         | 1 0 Sn202 Tn106                                                                                                                                                                                                                |                         |                                                                        |  |  |  |  |  |
|                                               |                  |         | 1 1 Sn203 Tn107                                                                                                                                                                                                                |                         |                                                                        |  |  |  |  |  |
|                                               |                  |         | Internal speed setting and limit:<br>"1": Close loop with <b>IG24</b><br>"0": Open loop with <b>IG24</b>                                                                                                                       |                         |                                                                        |  |  |  |  |  |



# **Digital Input Function Explanation**

(Except CCWL and CWL are the high electric potential, other terminal layout are the low electric potential,

| Signal Name                             | Function<br>Symbol | Mode    |              |                                                                                                                                                                                                                       |                                    | I/O Function                                                                                                                | Chapter |  |  |  |
|-----------------------------------------|--------------------|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| Control Mode<br>Switch                  | MDC                | Pe/S/T  |              | When <b>MDC</b> and <b>IG24</b> close loop, current control mode will ransform into default control mode, please refer to <b>Cn001</b> .                                                                              |                                    |                                                                                                                             |         |  |  |  |
| Position<br>Command Limit               | INH                | Pe      |              |                                                                                                                                                                                                                       |                                    | close loop, position command input does accept external pulse command).                                                     | 5-4-1   |  |  |  |
| Speed Command<br>Counter Wise           | SPDINV             | S       | rotat        | ting spe                                                                                                                                                                                                              | ed will b                          | IG24 close loop in speed mode, setting ecome counter-wise rotating speed.                                                   | 5-3-7   |  |  |  |
| Gain Select                             | G-SEL              | Pi/Pe/S |              |                                                                                                                                                                                                                       |                                    | <b>524</b> close loop, first stage control gain d control gain.                                                             | 5-3-11  |  |  |  |
| Electric Gear ratio<br>Numerator 1~2    | GN1<br>GN2         | Pi/Pe   | "1":<br>"0": | Electric gear ratio: select explanation:<br>GN2       GN1       Electric Gear ratio Numerator         0       0       Pn302         0       1       Pn303         1       0       Pn304         1       1       Pn305 |                                    |                                                                                                                             |         |  |  |  |
| Internal Position<br>Command<br>Trigger | PTRG               | Pi      | moto         | or will se                                                                                                                                                                                                            | elect rela                         | <b>24</b> close loop (positively-triggered), the<br>ted position command to operate in<br>terminal layout <b>POS1~POS4.</b> | 5-4-8   |  |  |  |
| Internal Position<br>Command Hold       | PHOLD              | Pi      |              |                                                                                                                                                                                                                       | <b>D</b> and <b>I</b><br>stay hold | <b>G24</b> close loop(positively-triggered), the ing.                                                                       | 5-4-8   |  |  |  |
| Home                                    | SHOME              | Pi/Pe   |              | When <b>SHOME</b> and <b>IG24</b> close loop(positively-triggered),<br>HOME function operates                                                                                                                         |                                    |                                                                                                                             |         |  |  |  |
| External Origin                         | ORG                | Pi      | will         |                                                                                                                                                                                                                       |                                    | 4 close loop(positively-triggered), server<br>ernal reference point for home position                                       | 5-4-8   |  |  |  |

please refer to 5-6-1 to check related parameters setting)



# **Digital Input Function Explanation**

(Except CCWL and CWL are the high electric potential, other terminal layout are the low electric potential,

| Signal Name                                | Function<br>Symbol           | Mode | I/O Function C                             |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                             |       |  |
|--------------------------------------------|------------------------------|------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| Internal Position<br>Command select<br>1~4 | POS1<br>POS2<br>POS3<br>POS4 | Pi   | POS1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 | POS2<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | POS3<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | POS4<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 | ect :<br>Internal Position<br>Command select<br>Pn317, Pn318<br>Pn320, Pn321<br>Pn323, Pn324<br>Pn326, Pn327<br>Pn329, Pn330<br>Pn332, Pn333<br>Pn335, Pn336<br>Pn338, Pn339<br>Pn341, Pn342<br>Pn344, Pn345<br>Pn347, Pn348<br>Pn350, Pn351<br>Pn353, Pn354<br>Pn356, Pn357<br>Pn359, Pn360<br>Pn362, Pn363<br>xplanation: | 5-4-2 |  |
| Torque Command<br>Counter Clock<br>Wise    | TRQINV                       | т    |                                            |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                     | op in torque mode, setting<br>omes counter wise output.                                                                                                                                                                                                                                                                     | 5-2-4 |  |

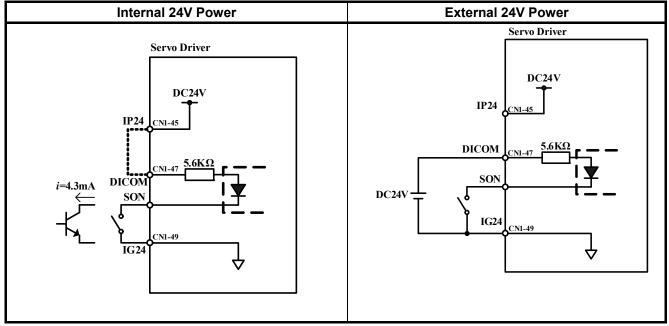
please refer to 5-6-1 to check related parameters setting)



# **Digital Output Function Explanation**

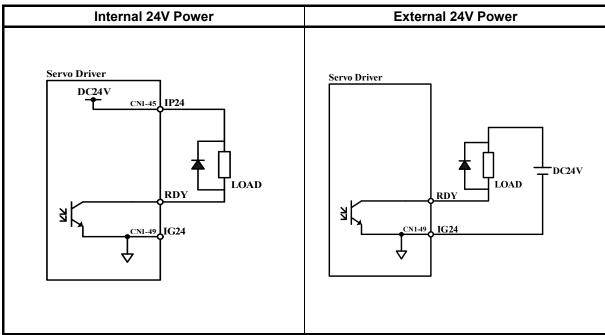
(The terminal layout here from this explanation are all the low electric potential, please refer to 5-6-1 to check

#### parameter settings)


| Signal Name                       | Function<br>Symbol                                                                                                                              | Mode  | I/O Function                                                                                                                                                                                                                                                                             | Chapter        |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| Servo Ready                       | RDY                                                                                                                                             | ALL   | Main power and control power input are normal. Under the situation of no alarm, terminal layouts <b>RDY</b> and <b>IG24</b> close oop.                                                                                                                                                   |                |  |  |
| Alarm                             | ALM                                                                                                                                             | ALL   | If normally operates, the terminal layouts <b>ALM</b> and <b>IG24</b> open<br>loop. When alarm occurs, protection-function operates, the<br>terminal and <b>IG24</b> close loop.                                                                                                         | _              |  |  |
| Zero Speed                        | ZS                                                                                                                                              | S     | When the motor speed is less than the speed from <b>Sn215</b> , the terminal layout <b>ZS</b> and <b>IG24</b> close loop.                                                                                                                                                                | 5-3-12         |  |  |
| BK Signal                         | BI                                                                                                                                              | ALL   | When <b>Cn008</b> is set "1" or "3" and the servo on, the terminal layout <b>BI</b> and <b>IG24</b> close loop; when servo off, terminal layout and <b>IG24</b> open loop. (When this terminal layout is generally applied, it is the Brake relay, which is connected to control motor). | 5-6-4<br>5-6-5 |  |  |
| In Speed                          | INS S When the motor speed has achieved the setting speed from 5<br>Cn007, INS and IG24 close loop. 5                                           |       | 5-3-12                                                                                                                                                                                                                                                                                   |                |  |  |
| In Position                       | INP Pi/Pe When the amount of position error counter is less than the amount range which is set in <b>Pn307</b> , <b>INP and IG24</b> close loop |       | 5-4-9                                                                                                                                                                                                                                                                                    |                |  |  |
| Home                              | HOME                                                                                                                                            | Pi/Pe | When HOME is accomplished, <b>HOME</b> and <b>IG24</b> close.                                                                                                                                                                                                                            | 5-4-8          |  |  |
| Limiting Torque/<br>Alarm No. 0   | Limiting Torque/<br>Alarm No. 0 LM/A0 ALL (PI<br>Wh                                                                                             |       | When motor output torque is limited by internal torque limit<br>amount ( <b>Cn010&amp;Cn011</b> ) or external torque limit command<br>( <b>PIC&amp;NIC</b> ). <b>LM/A0</b> and <b>IG24</b> close loop.<br>When alarm occurs, this terminal layout is alarm code output<br><b>A0</b> .    |                |  |  |
| P in Action /<br>Alarm No.1       | 1000                                                                                                                                            |       | 8-1                                                                                                                                                                                                                                                                                      |                |  |  |
| Server in Limiting/<br>Alarm No.2 | ST/A2                                                                                                                                           | ALL   | When CCW or CW operation-limit occurs, <b>ST/A2</b> and <b>IG24</b> close loop.<br>When alarm occurs, this terminal layout is alarm code output <b>A2</b>                                                                                                                                |                |  |  |
| Base Block/<br>Alarm No.3         |                                                                                                                                                 |       | 8-1                                                                                                                                                                                                                                                                                      |                |  |  |

(3) CN1 Interface Circuit and Wire Mode:

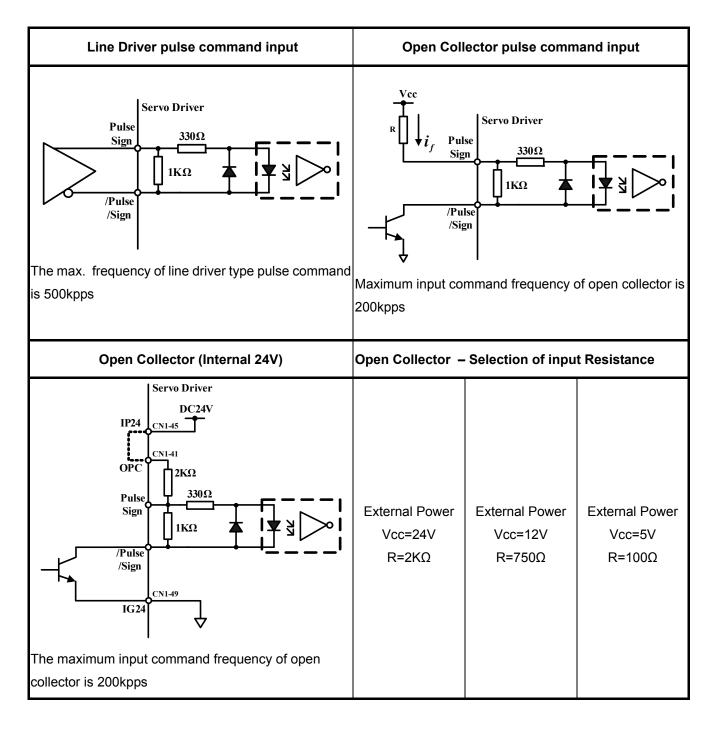
The diagram below introduces all interface circuit of CN1 and wire-method of host controller.


(a) Digital input interface circuit (**IO1**):

Digital input interface circuit can be operated by relay or collector transistor circuit. The relay should be the low electric current, in order to avoid the faulty contacting. External voltage: 24V.



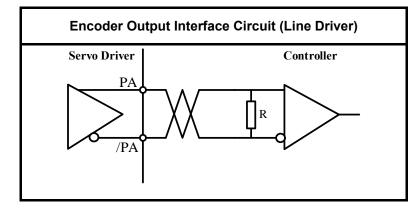
(b) Digital Output Interface Circuit(IO2):


When using external power, please attention to the power polarity. Adverse polarity will case circuit damage. Digital output is "Open Collector". The maximum of external voltage is 24V; and the maximum electric current is 10mA.





(C) Pulse Command Input Interface Circuit(IO3):


Suggesting to use the input method of Line Driver to send the pulse command. The maximum input command frequency is 500kpps. Using the input method of Open Collector will cause the decrease of input command frequency, the maximum input command frequency is 200kpps. The servo provides only 24V power, and other power should be prepared. Adverse polarity of power will cause the servo damage. The maximum of External power (Vcc) is 24V limited. Input current is about 8~15mA. Please refer to the examples below to select resistance. Please refer to 5-4-1 to check pulse input command timing.

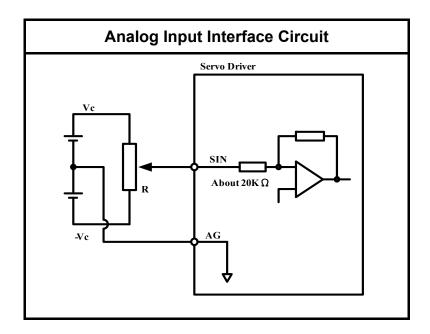




(d) Encoder Output Interface Circuit (IO4):

Encoder output interface circuit is the output method of Line Driver, please let end terminal resistance( $R=200\sim330\Omega$ ) connect to Line Receiver input terminal.

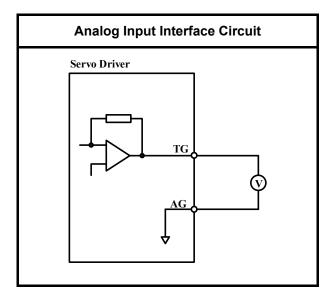



(e) Analog Input Interface Circuit(IO5):

There is sometimes ripple inside the servo internal power. Adverse external power polarity will cause severe damage. Maximum external power voltage (Vc) should be less than12V; terminal input voltage should not more than10V. Over voltage will cause damage. When using internal power of server, user need to choose the resistance(suggestion: more than  $3K\Omega$ ), which maximum current is less than 10mA.

SIN Input impedance:  $15K\Omega$ 

PIC Input impedance:  $40K\Omega$ 


NIC Input impedance:  $20K\Omega$ 





(f) Analog Output Interface Circuit(**IO6**):

The maximum current of analog output is 5mA, so user need to choose the device, which Impedance is larger.





# 2-2-2 Encoder Connector (CN2) Terminal Layout

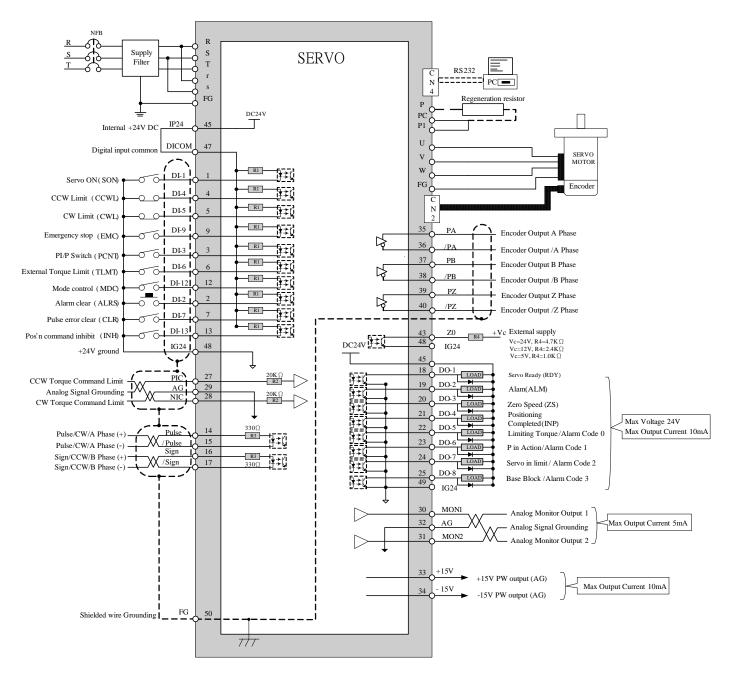
(1) Diagram of CN2 Terminal:

| Pin | Terminal                        | Function                     |             |             |                             | _           |             |                  |             |      |      |             |    |  |  |      |      |
|-----|---------------------------------|------------------------------|-------------|-------------|-----------------------------|-------------|-------------|------------------|-------------|------|------|-------------|----|--|--|------|------|
| No. | Layout                          | Tuncuon                      | 1           | +5V         | PW Output                   |             |             |                  | 11          | <br> |      |             |    |  |  |      |      |
| 2   | +5V                             | PW Output<br>Terminal        | 1           |             | Terminal                    | 12          |             |                  |             |      |      |             |    |  |  |      |      |
|     | 101                             |                              | 3           | 0V          | PW<br>Grounding<br>Terminal | 12          |             |                  | 13          | <br> |      |             |    |  |  |      |      |
| 4   | 0V                              | PW<br>Grounding<br>Terminal  | 5           |             |                             | 14          | 14          |                  | 15          |      |      |             |    |  |  |      |      |
| -   | 0.                              |                              |             |             | 5                           | А           | Encoder / A | 14               |             |      | 15   |             |    |  |  |      |      |
| 6   | 6 /A Encoder / A<br>Phase Input | 5                            | 5 1         | Phase Input | 16                          |             |             | 15               |             |      |      |             |    |  |  |      |      |
| 0   |                                 | Phase Input                  | Phase Input | 7           | В                           | Encoder / B | 10          |                  |             | 17   | <br> |             |    |  |  |      |      |
| 8   | /B Encoder / B                  | 7                            | В           | Phase Input | 18                          |             |             | 17               |             |      |      |             |    |  |  |      |      |
| 0   | 70                              | Phase Input                  | Phase Input | Phase Input | Phase Input                 | Phase Input | Phase Input | Phase Input      | Phase Input | 9    | Z    | Encoder / Z | 10 |  |  | - 19 | <br> |
| 10  | 10 /Z                           | Z Encoder / Z<br>Phase Input |             | L           | Phase Input                 | 20          | FG          | Shielded<br>Wire | 1)          |      |      |             |    |  |  |      |      |
| 10  |                                 |                              |             |             |                             | 20          | 10          | Grounding        |             |      |      |             |    |  |  |      |      |

(a) Diagram of Fewer Wiring Type Encoder:

(b) Diagram of non-Fewer Wiring Type Encoder:

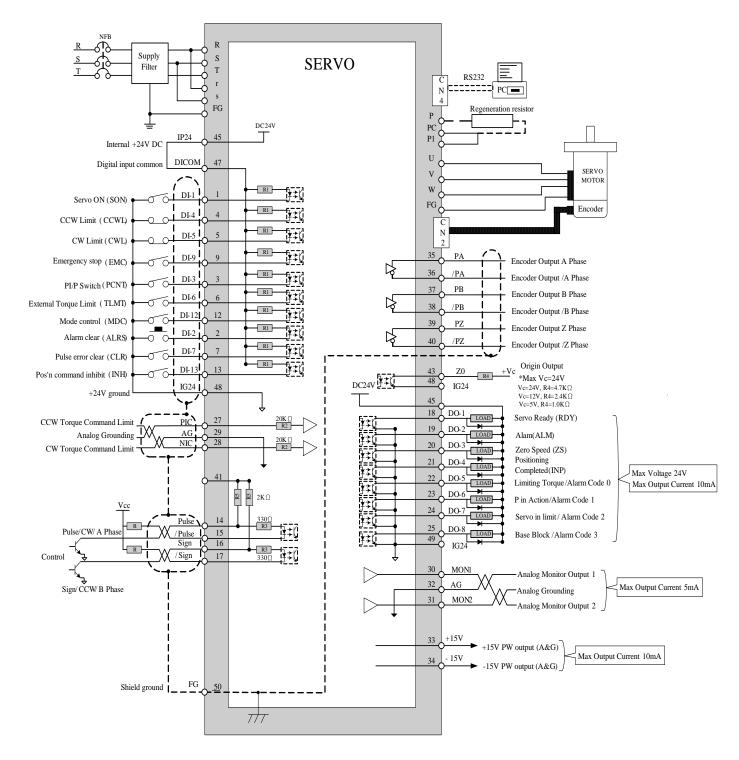
| Pin | Terminal                  | Function                    |          |                        |           | _               |            |               |         |      |           |           |  |
|-----|---------------------------|-----------------------------|----------|------------------------|-----------|-----------------|------------|---------------|---------|------|-----------|-----------|--|
| No  | Layout                    | Function                    | 1        | +5V                    | PW Output |                 |            |               | 11      | U    | Encoder / |           |  |
| 2   | +5V                       | -5V PW Output<br>Terminal   | 1        | 151                    | Terminal  | 12              | /U         | Encoder /     | 11      | U    | U Phase   |           |  |
|     | 101                       |                             | Terminal | 3                      | 0V        | PW<br>Grounding | 12         | 70            | U Phase | - 13 | V         | Encoder / |  |
| 4   | 0V                        | PW<br>Grounding<br>Terminal | 5        | 01                     | Terminal  | 14              | /V         | Encoder /     | 15      | v    | V Phase   |           |  |
|     |                           |                             | 5        | A                      | Encoder / | 14              | , <b>v</b> | V Phase       | 15      | W    | Encoder / |           |  |
| 6   | 6 /A Encoder /<br>A Phase | 5                           |          | A Phase                | 16 /W     | Encoder /       | 10         |               | W Phase |      |           |           |  |
| 0   |                           |                             | 7        | В                      | Encoder / | 10              | , ,,       | W Phase       | 17      |      |           |           |  |
| 8   | /B                        | Encoder /<br>B Phase        |          |                        | ,         | B B Phase       | B Phase    | 18 —          |         |      | 17        |           |  |
| 0   | 70                        |                             | 9        |                        | Encoder / | 10              |            |               | - 19    |      |           |           |  |
| 10  | 10 /Z                     | Encoder /                   | ,        | <sup>9</sup> Z Z Phase |           | 20              | FG         | Shielded Wire | 17      |      |           |           |  |
| 10  |                           | Z Phase                     |          |                        |           |                 | 10         | Grounding     |         |      |           |           |  |


P.S.: Do not wire to the terminal, which is un-operated.



#### (2) Name and Explanation of I/O Signal:

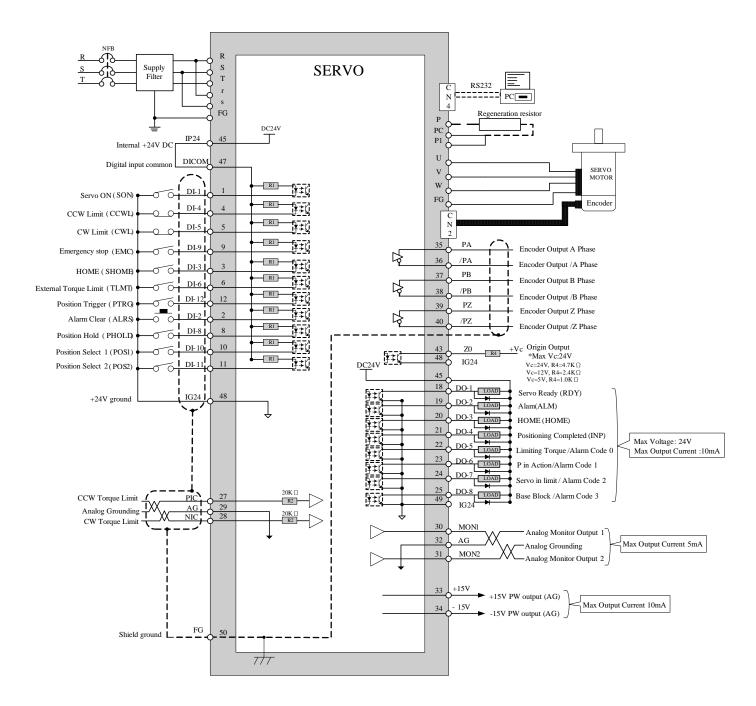
|                |                               |      | Encoder Output<br>No. and Color |                                   |                  |                                                                                                                                             |
|----------------|-------------------------------|------|---------------------------------|-----------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Pin<br>No.     | Signal Name                   | Code | General<br>Joint                |                                   | Plug-in<br>Joint | Terminal Layout Function                                                                                                                    |
|                |                               |      | 9 wires<br>(fewer<br>wiring)    | 15 wires<br>(non-fewer<br>wiring) | Output<br>No.    |                                                                                                                                             |
| 1<br>2         | Power output<br>+ Terminal    | +5V  | white                           | Red                               | В                | 5V Power for encoder (provided from driver).<br>When the cable is more than 20m, user should<br>separately use 2 cables to avoid decreasing |
| 3<br>4         | Power output<br>- Terminal    | 0V   | Black                           | Black                             | Ι                | voltage of encoder. When the cable is more than 30m, please contact to the distributorship.                                                 |
| 5              | A Phase encoder               | А    | Green                           | Green                             | А                | Encoder A Phase: From motor terminal to the                                                                                                 |
| 6              | input A                       | /A   | Blue                            | Green<br>White                    | С                | driver.                                                                                                                                     |
| 7              | B Phase encoder               | В    | Red                             | Gray                              | Н                | Encoder B Phase: From motor terminal to the                                                                                                 |
| 8              | input                         | /B   | Pink                            | Gray white                        | D                | driver.                                                                                                                                     |
| 9              | Z Phase encoder               | Z    | Yellow                          | Yellow                            | G                | Encoder Z Phase: From motor terminal to the                                                                                                 |
| 10             | input                         | /Z   | Orange                          | Yellow<br>white                   | Е                | driver.                                                                                                                                     |
| 11             | U Phase encoder               | U    |                                 | Brown                             |                  | When using fewer-wiring-type motor, do                                                                                                      |
| 12             | input                         | /U   |                                 | Brown<br>white                    |                  | not wire.                                                                                                                                   |
| 13             | V Phase encoder               | V    |                                 | Blue                              |                  | When using fewer-wiring-type motor, do                                                                                                      |
| 14             | input                         | /V   |                                 | Blue white                        |                  | not wire.                                                                                                                                   |
| 15             | W Phase encoder               | W    |                                 | Orange                            |                  | When using fewer-wiring-type motor, do                                                                                                      |
| 16             | input /                       |      |                                 | Orange<br>white                   |                  | not wire.                                                                                                                                   |
| 17<br>18<br>19 | No operated                   |      |                                 |                                   |                  | Do not wire.                                                                                                                                |
| 20             | Shielded wire terminal layout | FG   | Shielde                         | ed net wire                       | F                | Shielded wire, which is connected to the signal wire.                                                                                       |


## 2-3 Typical Circuit Wiring Examples 2-3-1 Position Control Mode (Pe Mode) (Line Driver)



#### Pe mode =External pulse positioning command

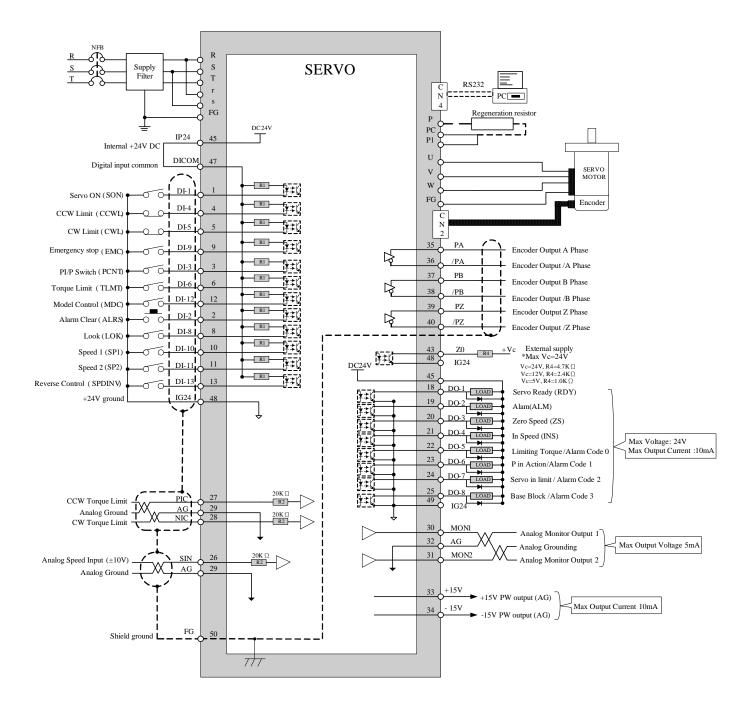



## 2-3-2 Position Control Mode (Pe Mode) (Open Collector)



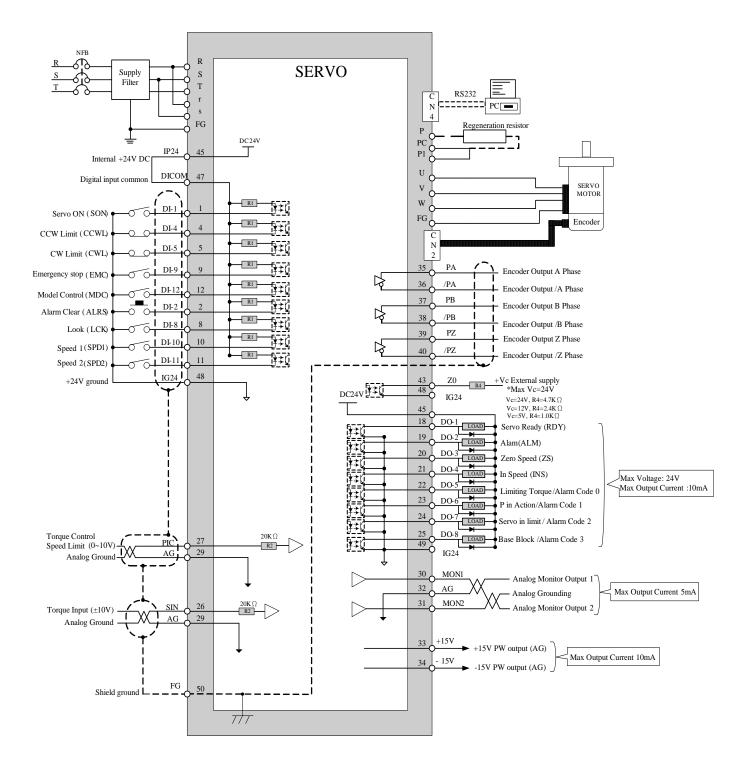
Pe mode =External pulse positioning command




### 2-3-3 Position Control Mode (Pe Mode) (Pi Mode)



Pi mode =Internal position command




## 2-3-4 Speed Control Mode (S Mode)





## 2-3-5 Torque Control Mode (T Mode)

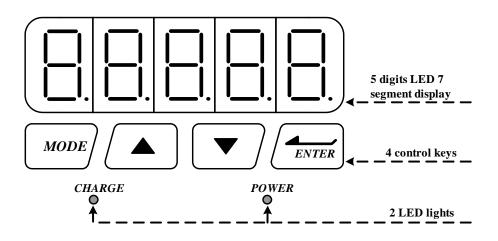




## **Chapter 3 Panel Operator / Digital Operator**

### **3-1 Panel Operator on the Drives**

The operator keypad & display contains a 5 digit 7 segment display, 4 control keys


and two status LED displays.

Power status LED (Green) is lit when the power is applied to the unit.

Charge LED (Red) Indicate the capacitor 's charge status of main circuit. power on to light up Charge LED

and gradual dark when internal power capacitors are discharged complete.

Do NOT wire or assemble to the servo drive before Charge LED is off.



| Кеу   | Name                            | Function Keys Description                                                                                                                                                                                                 |
|-------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODE  | MODE/SET                        | <ol> <li>To select a basic mode, such as the status display mode, utility<br/>function mode, parameter setting mode, or monitor mode.</li> <li>Returning back to parameter selection from data-setting screen.</li> </ol> |
|       | INCREMENT                       | 1. Parameter Selection.<br>2. To increase the set value.                                                                                                                                                                  |
|       | DECREMENT                       | 3. Press $\frown$ and $\overline{\checkmark}$ at the same time to clear ALARM.                                                                                                                                            |
| ENTER | DATA SETTING<br>&<br>DATA ENTER | <ol> <li>To confirm data and parameter item.</li> <li>To shift to the next digit on the left.</li> <li>To enter the data setting (press 2 sec.)</li> </ol>                                                                |



After power on, MODE button can be used to select 9 groups of parameter.

| Step | Key      | LED Display after Operation | Description                                                   |
|------|----------|-----------------------------|---------------------------------------------------------------|
| 1    | Power on |                             | Drive status parameters.                                      |
| 2    | MODE     |                             | Diagnostic parameters.                                        |
| 3    | MODE     |                             | Alarm parameters.                                             |
| 4    | MODE     |                             | System Control parameters.                                    |
| 5    | MODE     |                             | Torque Control parameters.                                    |
| 6    | MODE     |                             | Speed Control parameters.                                     |
| 7    | MODE     |                             | Position Control parameters.                                  |
| 8    | MODE     |                             | Quick set up parameters.                                      |
| 9    | MODE     | Hnsli                       | Multi function I/O ( programmable Inputs/Outputs) Parameters. |
| 10   | MODE     |                             | Return to Drive status parameters.                            |



Once the first parameter in a parameter group is displayed use **Increment** or **Decrement** keys to select the required parameter then use **Enter** key in order to view and alter the parameter setting, once this is done then press **Enter** key again to save the change.

Notes: On each parameter display the first digit will be flashing, the enter key can be used to move between digits.

Example procedures are shown below: -

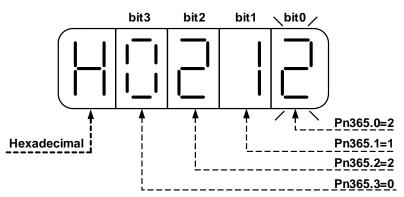
#### Ex: Setting Speed Parameter Sn203 to 100rpm.

| Step | Key      | LED Display after Operation | Description                                                                                                                                                          |
|------|----------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Power On |                             | Display status of servo drive                                                                                                                                        |
| 2    | MODE     |                             | Press MODE-Key 6 times to select Sn 201                                                                                                                              |
| 3    |          |                             | Press INCRMENT- Key twice Sn203 is displayed.                                                                                                                        |
| 4    | ENTER    |                             | To view the Sn203 preset value by press <b>ENTER-Key</b> for 2 seconds                                                                                               |
| 5    | ENTER    |                             | Shift to the second digit by press ENTER- Key once                                                                                                                   |
| 6    | ENTER    |                             | Shift to next Digit by press ENTER-Key once again                                                                                                                    |
| 7    |          |                             | Change the digit preset value by press the <b>DECREMET-Key</b> twice                                                                                                 |
| 8    |          |                             | To save the altered preset value, Press the <b>ENTER- Key</b> for 2 seconds until " <b>SET</b> "is displayed briefly and then display is returned to parameter Sn203 |

Following example shows the sequence where a parameter preset value is displayed

When no change is made and it is skip back to the original parameter by pressing the Mode-Key.

| Step | Key      | LED Display after Operation | Description                                                                                       |
|------|----------|-----------------------------|---------------------------------------------------------------------------------------------------|
| 1    | Power ON |                             | When power on drive status parameter will display                                                 |
| 2    | MODE     |                             | Pressing <b>MODE-Key</b> 6 times, Sn 201 will be displayed.                                       |
| 3    |          |                             | Pressing <b>INCRMENT- Key</b> twice Sn203 is displayed.                                           |
| 4    | ENTER    |                             | To view the Sn203 preset press ENTER-Key for 2 seconds.                                           |
| 5    | MODE     |                             | No change is made and LED display return to last select parameter Sn203, press MODE-Key once skip |




Some of the data entry in this drive are in the format shown below, for these data the Most significant digit will be shown by the Capital letter "H" as shown below.

Ex: Home search function in position mode **Pn365 = 0212.** Each digit of this preset for Pn365 parameter defines a selection for a specific function.

Bit0 corresponds to a selection for parameter Pn 365.0 and bit1 setting for Pn 365.1  $\ldots$  etc.

Parameter Pn 365 Format for the 5 digits data value is shown below:



#### Display of Positive and Negative values:

| Description of Positive/Negative Display                                                                                      | Display of Positive | <b>Display of Negative</b> |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|
| For negative numbers with 4 digits or less, the negative sign is                                                              | 3000                | -3000                      |
| displayed In the most significant digit as shown.<br>Ex: <b>Sn201</b> (Internal Speed Command 1).                             |                     |                            |
| For negative numbers with 5 digits the negative sign is indicated by                                                          | 30000               | -30000                     |
| displaying <b>all the 5 decimal points</b> on the display.<br>Ex: <b>Pn317</b> (Internal Position Command 1- Rotation number) |                     |                            |

#### Setting a negative value.

(1) If the negative value has 4 digits or less follow the steps in the example below:

Ex: Sn201(Internal speed command 1)= preset speed of 100 to -100 rpm.

| Step | Key      | LED Display after Operation | Description                                                                                                                                                           |
|------|----------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Power ON |                             | On" power on " <b>Drive Status</b> parameter is displayed.                                                                                                            |
| 2    | MODE     |                             | Pressing <b>MODE-Key</b> 5 times, Sn 201 will be displayed.                                                                                                           |
| 3    | ENTER    |                             | To view the Sn201 preset press ENTER-Key for 2 seconds.                                                                                                               |
| 4    | ENTER    |                             | To move to the most significant digit press the <b>ENTER-Key</b> 4 times.                                                                                             |
| 5    | or V     |                             | Use <b>INCREMENT Or DECREMENT</b> key until<br>the minus sign ( _ ) is displayed. You can toggle between – and<br>+ by this key.                                      |
| 6    | ENTER    |                             | To save the altered preset value, Press the <b>ENTER- Key</b> for 2 seconds until " <b>SET</b> "is displayed briefly and then display is returned to parameter Sn201. |



If the negative value has 5 digits follow the steps in the example below:

| Step | Control Keys | LED Display after Operation | Description                                                                                                                                                                                    |
|------|--------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Power On     |                             | On" power on " <b>Drive Status</b> parameter is displayed.                                                                                                                                     |
| 2    | MODE         |                             | Pressing <b>MODE-Key</b> 6 times, position parameter Pn 301 will be displayed.                                                                                                                 |
| 3    |              |                             | Use INCREMENT- Key to display Pn317.                                                                                                                                                           |
| 4    | ENTER        |                             | To view the Pn317 preset press ENTER-Key for 2 seconds.                                                                                                                                        |
| 5    | ENTER        |                             | To move to the most significant digit press the <b>ENTER-Key</b> 4 times.                                                                                                                      |
| 6    |              |                             | Press <b>DECREMENT-Key</b> once to set the most significant digit<br>To 1. And press the <b>DECREMENT-Key</b> once again.<br>All 5 decimal points will light up to indicate a negative number. |
| 7    | ENTER        |                             | To save the altered preset value, Press the <b>ENTER- Key</b> for 2 seconds until " <b>SET</b> "is displayed briefly and then display is returned to parameter Pn 317.                         |

Ex: Pn317 (internal position preset command 1) set to a negative value -10000 revolutions.

#### Alarm Reset from the Keypad.

All alarm displays can be cleared from the keypad without a need for an external Alarm clear (Reset) signal.

| Step | Control Key | LED Display after Opertion | Description                                                                                                                                                                                                                     |
|------|-------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Alarm       |                            | Under voltage Alarm AL-01 is displayed.                                                                                                                                                                                         |
| 2    |             |                            | To clear Alarm:-<br>Remove input contact <b>SON</b> (Servo On).<br>Then press <b>INCREMENT-Key and DECREMENT-Key</b><br>at the same time.<br>The display will show RESET briefly and then returns back to<br>parameter display. |

#### Ex. Under voltage Alarm AL-01.



# 3-2 Signal Display

## 3-2-1 Status Display

Following parameters can be used to display drive and motor Status.

| Parameter<br>Signal | Displayed                                                             | Unit  | Description                                                                                                                                                                                                                                   |
|---------------------|-----------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Un-01               | Actual motor speed                                                    | rpm   | Actual Motor Speed is displayed in rpm.                                                                                                                                                                                                       |
| Un-02               | Actual motor torque                                                   | %     | It displays the torque as a percentage of the rated torue.<br>Ex: 20 are displayed. It means that the motor torque output is 20% of<br>rated torque.                                                                                          |
| Un-03               | Regenerative load ratio                                               | %     | Value for the processable regenerative power as 100% .                                                                                                                                                                                        |
| Un-04               | Accumulated load ratio                                                | %     | Value for the rated torque as 100%.                                                                                                                                                                                                           |
| Un-05               | Max load rate                                                         | %     | Max value appeared on accumulated load rate                                                                                                                                                                                                   |
| Un-06               | Speed command                                                         | rpm   | Speed command is displayed in rpm.                                                                                                                                                                                                            |
| Un-07               | Position error counter value                                          | pulse | Error between position command value and the actual position feedback.                                                                                                                                                                        |
| Un-08               | Position feedback pulse counter                                       | pulse | The accumulated number of pulses from the motor encoder.                                                                                                                                                                                      |
| Un-09               | External voltage command                                              | V     | External analog voltage command value in volts.                                                                                                                                                                                               |
| Un-10               | Main circuit Vdc Bus Voltage                                          | V     | DC Bus voltage in Volts.                                                                                                                                                                                                                      |
| Un-11               | External speed limit command value                                    | rpm   | Display external speed limit command value in rpm.                                                                                                                                                                                            |
| Un-12               | External CCW Torque limit<br>command value                            | %     | Ex: Display 100. Means current external CCW torque limit command is set to 100 %.                                                                                                                                                             |
| Un-13               | External CW Torque limit command value                                | %     | Ex: Display 100. Means current external CW toque limit command is set to 100%.                                                                                                                                                                |
| Un-14               | Motor feed back – Rotation value<br>(absolute value)                  | rev   | After power on, it displays motor rotation number as an absolute value.                                                                                                                                                                       |
| Un-15               | Motor feed back – Less then 1<br>rotation pulse value(absolute value) | pulse | After power on, it displays the pulse number for less than a revolution of the motor as an absolute value.                                                                                                                                    |
| Un-16               | Pulse command – rotation<br>value(absolute value)                     | rev   | After power on, it displays pulse command input rotation number in absolute value.                                                                                                                                                            |
| Un-17               | Pulse command – Less then 1<br>rotation pulse value(absolute value)   | pulse | After power on, it displays pulse command input for less than a rotation.<br>pulse value is an absolute value.                                                                                                                                |
| Un-18               | Torque command                                                        | %     | It displays the torque command as a percentage of the rated torque.<br>Ex: Display. 50.Means current motor torque command is 50% of rated torque.                                                                                             |
| Un-19               | Load inertia                                                          | x0.1  | When <b>Cn002.2=0</b> (Auto gain adjust disabled), it displays the current preset load inertia ratio from parameter <b>Cn025</b> .<br>When <b>Cn002.2=1</b> (Auto gain adjust enabled), it displays the current estimated load inertia ratio. |

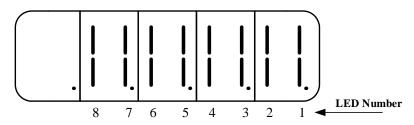
## **3-2-2 Diagnostic function**

Following diagnostics parameters are available:

| Parameter<br>Signal | Name and Function                                        |  |
|---------------------|----------------------------------------------------------|--|
| dn-01               | Control mode display                                     |  |
| dn-02               | Output terminal status                                   |  |
| dn-03               | Input terminal status                                    |  |
| dn-04               | Software version (CPU version)                           |  |
| dn-05               | JOG mode operation                                       |  |
| dn-06               | Reserve function                                         |  |
| dn-07               | Auto offset adjustment of external analog command voltag |  |
| dn-08               | Servo model code                                         |  |
| dn-09               | ASIC software version display                            |  |

## dn-01 (Control Mode Display)

Access **dn-01** to display the selected control mode.


Control mode display description is listed in the table below:

| Control Mode                          | dn-01 ( Control mode display) |
|---------------------------------------|-------------------------------|
| Torque control - T                    |                               |
| Speed control - S                     |                               |
| Position control                      |                               |
| (External pulse command) - Pe         |                               |
| Position/Speed control switch - Pe/S  | PE-S                          |
| Speed/Torque control switch - S/T     |                               |
| Position/Torque control switch - Pe/T |                               |
| Position control                      |                               |
| (Internal position command) - Pi      |                               |

#### dn-02 (Output terminal status)

Use dn-02 to check the status of output terminals.

Output status display is described below:



When output terminal signal has a low logic level (close loop with IG24),

the corresponding LED will be on.

When output terminal signal has a high logic level (open loop with IG24),

the corresponding LED will be off.

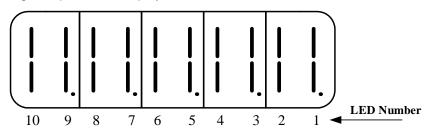
Table below shows the functions of the digital outputs.

**DO-1~DO-4** are programmable outputs. Default settings are shown below.

DO-5~DO-8 are fix function outputs. (non-programmable)

For programmable output list see section 5-6-1.

| LED No. | Output terminal number | Default function |
|---------|------------------------|------------------|
| 1       | DO-1                   | RDY              |
| 2       | DO-2                   | ALM              |
| 3       | DO-3                   | ZS               |
| 4       | DO-4                   | INP              |
| 5       | DO-5                   | LM/A0            |
| 6       | DO-6                   | PC/A1            |
| 7       | DO-7                   | ST/A2            |
| 8       | DO-8                   | BB/A3            |


Note: To set the logic state (High or Low) of for programmable digital outputs refer to section 5-6-1.

For the DO-5~DO-8 (non-programmable) terminals are active when logic is low.



### dn-03 (Input terminals status)

Use dn-03 to check the status of Input terminals. Digital Input status display is described below:



When Input terminal signal has a low logic level (close loop with **IG24**), the corresponding LED will be on. When Input terminal signal has a high logic level (open loop with **IG24**), the corresponding LED will be off. Table below shows the functions of the digital input.

DI-1 ~ DI -10 are programmable Inputs. Default settings are shown below.

For programmable function list see section 5-6-1.

| LED Number | Input terminal number | Default function |
|------------|-----------------------|------------------|
| 1          | DI-1                  | SON              |
| 2          | DI -2                 | ALRS             |
| 3          | DI -3                 | PCNT             |
| 4          | DI -4                 | CCWL             |
| 5          | DI -5                 | CWL              |
| 6          | DI -6                 | TLMT             |
| 7          | DI -7                 | CLR              |
| 8          | DI -8                 | LOK              |
| 9          | DI -9                 | EMC              |
| 10         | DI -10                | SPD1             |



## dn-04 (Version of Software)

Use dn-04 to view the current software version of the Servo drive.

Software version can be checked as below:

| Step | Keys     | LED Display | Description                                                                                 |
|------|----------|-------------|---------------------------------------------------------------------------------------------|
| 1    | Power On |             | On" power on <b>Drive Status</b> is displayed.                                              |
| 2    | MODE     |             | Press <b>MODE-Key</b> twice to view diagnostics parameter dn-01.                            |
| 3    |          |             | Press <b>INCREMENT-Key</b> 3 times to display dn-04.                                        |
| 4    | ENTER    |             | Press <b>ENTER-Key</b> for 2 seconds to view the software version. (Software version: 2.00) |
| 5    | MODE     |             | Press <b>MODE-Key</b> once to return to dn-04 and parameter selection.                      |

## dn-05 (JOG Operation)

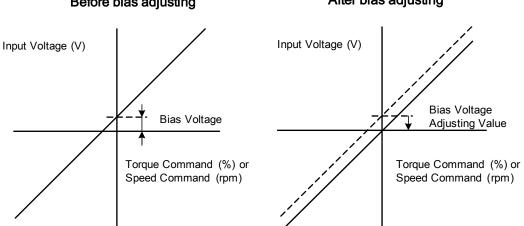
Use dn-05 to JOG the motor. Jog is activated by following the steps below:

Note: JOG speed is in accordance with setting of Sn201(internal speed command 1).

Ensure that the required speed is set in Sn201 before executing this function.

Warning: Motor will be agitated run as soon as JOG command is activated.

without the need for SON input (Servo On signal).


| Step | Key      | LED display | Description                                                                                                        |
|------|----------|-------------|--------------------------------------------------------------------------------------------------------------------|
| 1    | Power on |             | On" power on <b>Drive Status</b> is displayed.                                                                     |
| 2    | MODE     |             | Press <b>MODE-Key</b> once to view diagnostics parameter dn-01.                                                    |
| 3    |          |             | Press INCREMENT-Key 4 times to display dn-5.                                                                       |
| 4    | ENTER    |             | Press ENTER-Key for 2 seconds to enter JOG MODE.<br>Motor will power on immediately.                               |
| 5    |          |             | Press <b>INCREMENT-Key</b> , motor will run in the pre-defined positive direction.                                 |
| 6    |          |             | Press <b>DECREMENT-Key</b> , motor will run in the pre-defined negative direction.                                 |
| 7    | MODE     |             | Press <b>MODE-Key</b> once to return to dn-05 and parameter selection.<br>Motor stoped the excitation immediately. |



## dn-07 (Auto offset adjustment of external analog command voltage)

If the external torque or speed analog command is set to 0V and the motor is rotating slowly, this is due to analog input zero offset, use **dn-07** to auto adjust this offset and stop the motor rotating. Follow the steps below:

| Step | Кеу      | LED Display                                  | Description                                                                                                                                                                                                                                                                                                                                                                                      |
|------|----------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    |          | c between analog comma<br>before proceeding. | and terminal SIN(CN1-26) and Analog Ground terminal                                                                                                                                                                                                                                                                                                                                              |
| 2    | Power on |                                              | On" power on " <b>Drive Status</b> is displayed.                                                                                                                                                                                                                                                                                                                                                 |
| 3    | MODE     |                                              | Press <b>MODE-Key</b> twice into diagnostics parameter dn-01.                                                                                                                                                                                                                                                                                                                                    |
| 4    |          |                                              | Press INCREMENT-Key 6 times to display dn-7.                                                                                                                                                                                                                                                                                                                                                     |
| 5    | ENTER    |                                              | Press ENTER-Key for 2 seconds to enter dn-07                                                                                                                                                                                                                                                                                                                                                     |
| 6    |          |                                              | Press <b>INCREMENT-Key</b> once to set to 1 (Enable auto offset adjustment).                                                                                                                                                                                                                                                                                                                     |
| 7    | ENTER    |                                              | To save the altered preset value and activate auto offset adjust,<br>Press the <b>ENTER- Key</b> for 2 seconds until " <b>SET</b> "is displayed<br>briefly and then display is returned to parameter dn-07.<br>To save this offset value, please select parameters Tn104 or<br>Sn217 as required and press the ENTER-Key.<br>Tn107 for analog torque command.<br>Sn217 for analog speed command. |





Before bias adjusting

#### After bias adjusting

## dn-08 (Servo motor Model Code display)

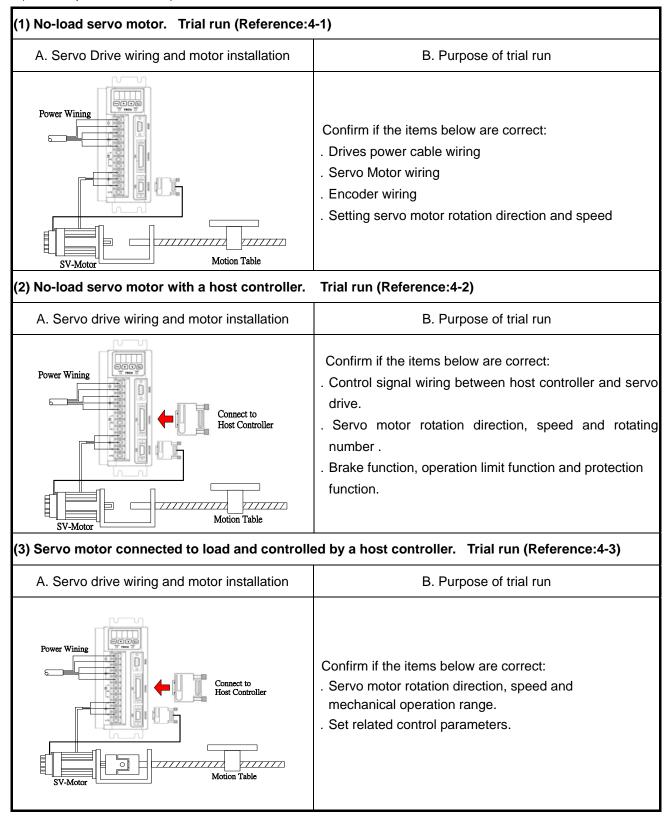
Use **dn-08** to display servo motor code and check the servo drive and motor compatibility according to the table below.

If the dn08 preset is not according to the list below then contact your supplier.

The motor model code is stored in parameter Cn30.

| dn-08 Display |             |                | Motor S     | tandards |                          |
|---------------|-------------|----------------|-------------|----------|--------------------------|
| Cn030 Setting | Drive Model | Motor Model    | Watt<br>(W) | Speed    | Encoder<br>Specification |
|               |             |                | (**)        | (rpm)    |                          |
| H1111         |             | TSC04101C-3NT3 | 100         | 3000     | 2500                     |
| H0112         |             | TSC04101C-3NL3 | 100         |          | 8192                     |
| H0121         |             | TSB07301C-2NH3 | 300         | 3000     | 2500                     |
| H0122         |             | TSB07301C-2NL3 | 500         | 5000     | 8192                     |
| H0130         |             | 6CC201G-3DEBE  |             |          | 2000                     |
| H1133         | TSTA-15     | TST06201C-3NT3 | 200         | 3000     | 2500                     |
| H1134         | 1014-13     | TST06201C-3NL3 |             |          | 8192                     |
| H0140         |             | TSC06401C-3NF3 |             |          | 2000                     |
| H1141         |             | TSC06401C-3NT3 |             | 3000     | 2500                     |
| H0142         |             | TSC06401C-3NL3 | 400         |          | 8192                     |
| H1143         |             | TST06401C-3NT3 |             |          | 2500                     |
| H1144         |             | TST06401C-3NL3 |             |          | 8192                     |
| H0211         |             | TSB08751C-2NH3 | 750         | 3000     | 2500                     |
| H0212         |             | TSB08751C-2NL3 | 750         |          | 8192                     |
| H0220         |             | TSC06401C-3NF3 |             | 3000     | 2000                     |
| H1221         |             | TSC06401C-3NT3 |             |          | 2500                     |
| H0222         |             | TSC06401C-3NL3 | 400         |          | 8192                     |
| H1223         |             | TST06401C-3NT3 |             |          | 2500                     |
| H1224         | TSTA-20     | TST06401C-3NL3 |             |          | 8192                     |
| H0230         | 131A-20     | 8CC751G-3DEBE  |             |          | 2000                     |
| H1233         |             | TST08751C-3NT3 | 750         | 3000     | 2500                     |
| H1234         |             | TST08751C-3NL3 |             |          | 8192                     |
| H0241         |             | TSB13551A-3NHA |             | 4000     | 2500                     |
| H0242         |             | TSB13551A-3NLA | 550         | 1000     | 8192                     |
| H0251         |             | TSB13551B-3NHA | 550         | 4500     | 2500                     |
| H0252         |             | TSB13551B-3NLA |             | 1500     | 8192                     |




| dn-08 Display |              |                | Motor S | tandards             |                          |
|---------------|--------------|----------------|---------|----------------------|--------------------------|
| Cn030 Setting | Drives Model | Motor Model    | Watt    | Speed                | Encoder<br>Specification |
|               |              |                | (W)     | (rpm)                | Specification            |
| H0310         |              | 8CC751C-3DEBE  |         |                      | 2000                     |
| H1313         |              | TST08751C-3NT3 | 750     | 3000                 | 2500                     |
| H1314         |              | TST08751C-3NL3 |         |                      | 8192                     |
| H0321         |              | TSB13102A-3NHA |         | 1000                 | 2500                     |
| H0322         |              | TSB13102A-3NLA |         | 1000                 | 8192                     |
| H0331         |              | TSB13102B-3NHA |         | 2000                 | 2500                     |
| H0332         |              | TSB13102B-3NLA | 1000    | 2000                 | 8192                     |
| H0341         |              | TSB13102H-3NHA | 1000    | 1500                 | 2500                     |
| H0342         | TSTA-30      | TSB13102H-3NLA |         | 1500                 | 8192                     |
| H0351         |              | TSB13102C-3NHA |         | 3000                 | 2500                     |
| H0352         |              | TSB13102C-3NLA |         |                      | 8192                     |
| H0361         |              | TSB13152A-3NHA |         | 1000                 | 2500                     |
| H0362         |              | TSB13152A-3NLA |         |                      | 8192                     |
| H0371         |              | TSB13152B-3NHA | 1500    | 2000                 | 2500                     |
| H0372         |              | TSB13152B-3NLA | 1500    |                      | 8192                     |
| H0381         |              | TSB13152C-3NHA |         | 3000                 | 2500                     |
| H0382         |              | TSB13152C-3NLA |         |                      | 8192                     |
| H0511         |              | TSB13152A-3NHA |         | 1000<br>2000<br>3000 | 2500                     |
| H0512         |              | TSB13152A-3NLA |         |                      | 8192                     |
| H0521         |              | TSB13152B-3NHA | 1500    |                      | 2500                     |
| H0522         |              | TSB13152B-3NLA | 1500    |                      | 8192                     |
| H0531         | TSTA-50      | TSB13152C-3NHA | 7       |                      | 2500                     |
| H0532         | 131A-30      | TSB13152C-3NLA | 7       |                      | 8192                     |
| H0541         |              | TSB13202B-3NHA |         | 2000                 | 2500                     |
| H0542         |              | TSB13202B-3NLA | 2000    | 2000                 | 8192                     |
| H0551         |              | TSB13202C-3NHA | 2000    | 2000                 | 2500                     |
| H0552         |              | TSB13202C-3NLA | 7       | 3000                 | 8192                     |
| H0711         |              | TSB13302B-3NHA |         | 2000                 | 2500                     |
| H0712         | TOTA 75      | TSB13302B-3NLA | 2000    | 2000                 | 8192                     |
| H0721         | TSTA-75      | TSB13302C-3NHA | 3000    | 3000 3000            | 2500                     |
| H0722         |              | TSB13302C-3NLA |         |                      | 8192                     |

# Chapter 4 Trial Operation

Before proceeding with trial run, please ensure that all the wiring is correct.

Trial run description below covers the operation from keypad and also from an external controller such as a PLC.

Trial run with external controller speed control loop (analog voltage command) and position control loop (external pulse command).





# 4-1 Trial Operation Servo motor without Load

To carry out a successful trial run follow the steps below and ensure that drive wiring is correct and as specified.



#### 1. Installation of servo motor.

Ensure that the motor is installed securely so that there is no movement and vibration during trial run.

#### 2. Wiring.

Check servo drive 、motor power connections and motor encoder connection.

No control signal wiring is required of this stage thus remove connector (CN1) from the servo drive.

#### 3. Servo drive power.

Apply power to servo drive. If the display shows any Alarm message such as graph below then refer to Alarm contents of chapter 8 to identify the cause.



AL-14 is caused by Input terminals **CCWL (Counter clockwise Limit)** and **CWL (Clockwise Limit)** being activated at the same time.

See (the default setting of high or low input logic state according to the description in section 5-6-1 ). Because of the alarm, the servo can not operate normally.

Set the parameter Cn002.1=1 to disable the drive limit function temporarily during trial run period.



#### Steps for setting parameter Cn002.1 ( CCWL &CWL Rotation limit selection).

| Setp | Keys     | LED Display | Description                                                                                                                                                             |
|------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Power on |             | On" power on " <b>Drive Status</b> is displayed.                                                                                                                        |
| 2    | MODE     |             | Press <b>MODE-Key</b> 4 times to display Cn001.                                                                                                                         |
| 3    |          |             | Press INCREMENT-Key once to display Cn002.                                                                                                                              |
| 4    | ENTER    |             | Press <b>ENTER-Key</b> for 2 secs to display the preset value of Cn002. Note: Cn 002 includes 4 digits corresponding to Cn002.0,Cn002.1,Cn002.2 & Cn002.3.              |
| 5    | ENTER    |             | Press ENTER-Key once to move to the 2 <sup>nd</sup> digit for (Cn 002.1).                                                                                               |
| 6    |          |             | Press <b>INCREMENT- Key</b> once to adjust the 2 <sup>nd</sup> digit to 1.<br>Disable the function of external limits CCWL and CWL.                                     |
| 7    | ENTER    |             | To save the setting value by<br>Press the <b>ENTER- Key</b> for 2 seconds until " <b>SET</b> "is displayed<br>briefly and then display is returned to parameter Cn-002. |

After accomplish these steps, reset the power. If there are any other alarms then refer to section **8-2 (Clearing Alarms)**. Once there is no alarms then operate the drive again. If any of the alarms can not be cleared, please contact your local supplier for assistance.

#### 4. Mechanical Brake Release.

When a brake type servo motor is used then must release the brake before starting trial run by applying 24vdc voltage to brake terminals.

#### 5. Keypad Trial run (JOG function).

Jog function can be used to check if motor speed and rotation direction is correct. Parameters Sn 201(internal speed command 1) and Cn004 (motor rotation direction selection) Can be used to set the required speed and direction.

#### Warning!

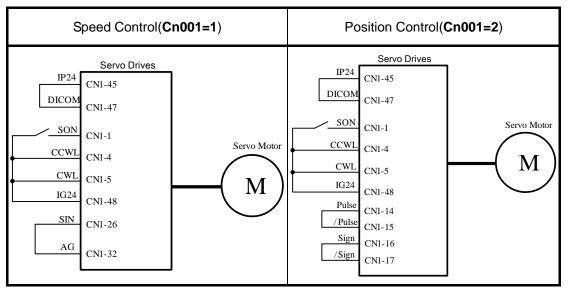
Set the required JOG speed before the trial run otherwise the motor will run at the default speed set in parameter Sn201(internal speed command 1).

#### Warning!

Regardless of external SON (servo on) is active of not, Servo motor will get excitation as soon as JOG is activated.

Steps for setting JOG function:

| Step | Keys     | LED Display | Description                                                                                                           |
|------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------|
| 1    | Power on |             | On" power on " <b>Drive Status</b> is displayed.                                                                      |
| 2    | MODE     |             | Press <b>MODE-Key</b> twice to view diagnostics parameter dn-01.                                                      |
| 3    |          |             | Press <b>INCREMENT-Key</b> 4 times to display dn-5.                                                                   |
| 4    | ENTER    |             | Press ENTER-Key for 2 seconds to enter JOG MODE.<br>Motor will power on immediately.                                  |
| 5    |          |             | Press <b>INCREMENT-Key</b> , motor will run in the pre-defined positive direction.                                    |
| 6    |          |             | Press DECREMENT-Key, motor will run in the pre-defined negative direction.                                            |
| 7    | MODE     |             | Press <b>MODE-Key</b> once to return to dn-05 and parameter selection.<br>Motor power will be turned off immediately. |


## 4-2 Trial Operation for Servo motor without Load from Host Reference

Check and ensure that all power connections to the drive and motor and control signal connection between the host controller and the drive are correct.Motor must be mechanically disconnected from the load. Following section describes the trial run when using a host controller such as a PLC. Two trial runs have been discussed. Speed control mode ( Section B) and Position control mode ( Section C).

Section A shows the connections and SON signal (servo on) requirements for both trial runs.

#### A. Launching Servo motor

#### Example wiring diagram:



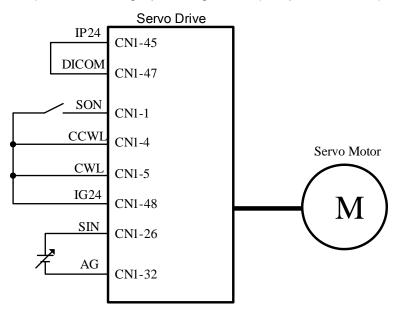
#### a. Disable Analog Input command terminals.

Speed control mode: Link analog input terminal SIN to 0V terminal (AG).

**Position control mode:** Link external pulse command terminals "Pulse" to "/Pulse" and "Sign" to "/Sign".

#### b. Enable Servo ON Signal

Connect **SON** terminal to IG 24 (0V) terminal (Digital Ground).


On drive power up servo will be turned on. Now check for any Alarms. If any alarms then refer to Chapter 8-2 for how to reset the Alarms.



#### B. Trial run in Speed control mode(Cn001=1).

#### 1. Wiring check:

Check and ensure that all power cable and control signal connections are correct as shown below. To be able to adjust the speed for test connect a potentiometer between terminals SIN (analog input voltage) and AG (Analog Ground). Set the analog input voltage to 0V. (No speed reference).



#### 2. Apply Servo on.

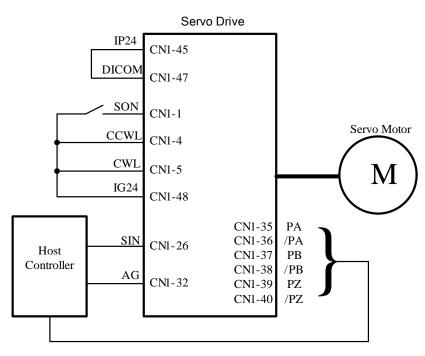
Apply power to the drive and activate (**SON**) signal by switching SON terminal to IG24 (input digital Ground). If the motor rotates slowly, while the speed analog input voltage is 0 volts

then use dn-07 function to auto offset adjustment for the analog input value. (refer to section 3-2-2).

#### 3. Check the relationship between motor speed and the analog input speed command.

Increase the analog speed input voltage gradually (by potentiometer) and monitor the actual motor speed by parameter **Un0-01**.

Check if motor rotation direction is correct and if necessary set it by parameter Cn004.


Check for correctness of analog speed command ratio in relation to the preset in parameter (**Sn216**) and analog speed command limit as set in parameter (**Sn218**).

Finally, switch off SON signal (turn off the servo motor).



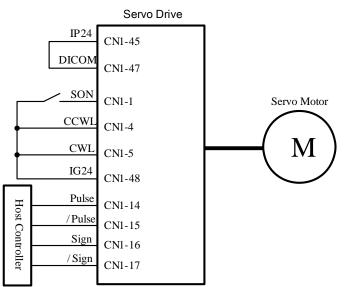
#### 4. Connection with a host controller.

Check and ensure that the wiring for the servo drive and host controller, speed analog signal input (SIN), and encoder output (PA, /PA, PB, /PB, PZ, /PZ) are all correct and according to the diagram below:



#### 5. Confirm the rotation number and encoder output of Servo Motor.

Use parameter Un-14 to check if the Motor feed back (number of revolutions) per minute is correct and the same as number of revolutions sent by the host controller.


If there is any difference then check and make sure that parameter Cn005 (Encoder ppr) is set correctly. Once this is complete remove SON signal to switch off power to the motor.



#### C. Position control mode trial run (Cn001=2).

#### 1. Wiring:

Check and ensure that all power connections to the drive and motor and control signal connections are correct as diagram below.



#### 2. Setting electronic gear ratio.

Set electronic gear ratio parameters Pn302~Pn306 as required for the positioning application. (refer to section 5-4-3).

Note: Electronic gear ratio parameter can be used to scale the command output pulse.

This would be useful in transmission applications where move distance per move command pulse has to be scaled due to mechanical requirements.

#### 3. Apply Servo on.

Apply power to the drive and activate (SON) signal by switching SON terminal to IG24 (input digital Ground).

#### 4. Confirm motor speed, direction and number of revolutions.

Apply a low-speed pulse command from the host controller to the servo drive so that the servo motor operates at low-speed.

- Compare the number of pulses per revolution from parameters **Un-15** (motor feed back pulse ppr) and **Un-17** (Input command ppr) these should be the same.
- Compare the number of revolutions using parameters Un-14 (motor feed back rotation number) and Un-16 (pulse command rotation number) these should be the same.

If there are differences then adjust electronic gear ratio parameters **Pn302~Pn306** as required and test again until the result is satisfactory.

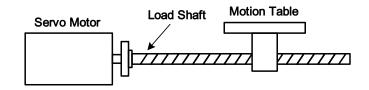
If the direction of motor rotation is incorrect then check and if necessary set parameter Pn 301.0 (position pulse command types).

Also check and if necessary set parameter Pn314 (Position command direction selection).

Once the test result is correct then remove SON signal. (Power to the motor is switched off).



## 4-3 Trial Operation with the Servo motor Connected to the Machine




Servo drive parameters must be set correctly otherwise damage to machinery and potential injury may result.

Do not close to the machine after temporary power loss, the machine may restart unexpected.

#### Please take the measures highlighted in the section below before trial run with load.

- Consider the Mechanical system requirements and set the parameters appropriate for control by the host controller.
- Ensure that the rotation direction and speed are suitable for the Mechanical system.



#### Steps required for Trial run.

- 1. Ensure that the ServoDrive Power is off.
- 2. Connect the servo motor to the load shaft.

Refer to Chapter 1-5 to check the installation guidelines for the servo motor.

- **3.** Gain adjustment for the servo control loop. Refer to Chapter 5-5 for details.
- 4. Trial run with a host controller.

Run command is to be signaled by the host controller.

Refer to Chapter 4-2 to choose the required trial run mode (Speed control or position control modes) according to the application and set and adjust the parameters if necessary for the application.

#### 5. Repeat adjusting and record the set parameter values.

Repeat steps 3 and 4 until the mechanical system is operating satisfactorily then record the Gain value and the parameters changes for the future use.

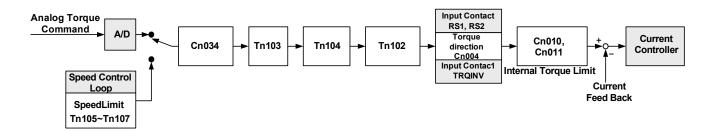


# **Chapter 5 Control Functions**

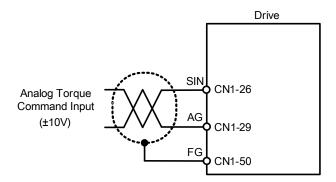
## **5-1 Control Mode Selection**

There are three control modes in the servo drive, torque, speed and position modes can be selected individually or as a combination according to the selection table below:

| Parameter | Name         | Setting | Description                                                  | Default<br>Value | Control<br>Mode |
|-----------|--------------|---------|--------------------------------------------------------------|------------------|-----------------|
|           |              |         | Torque control                                               |                  |                 |
|           |              | 0       | To use one analog voltage command signal to control          |                  |                 |
|           |              |         | torque. Please refer to <b>5-2</b> .                         |                  |                 |
|           |              |         | Speed control                                                |                  |                 |
|           |              | 1       | Input contacts SPD1 and SPD2 can be used to select 4         |                  |                 |
|           |              |         | -steps of speed. Please refer to section 5-3-1.              |                  |                 |
|           |              |         | Position control (External pulse command)                    |                  |                 |
|           |              | 2       | Four separate selectable pulse command types are             |                  |                 |
|           |              | 2       | possible                                                     |                  |                 |
|           | Control mode |         | to control position. Please refer to section <b>5-4-1</b> .  |                  |                 |
|           |              | e 3     | Position / Speed control switch                              |                  |                 |
|           |              |         | Input contact <b>MDC</b> can be used to switch between       |                  |                 |
| ★ Cn001   | selection    | 0       | position                                                     | 2                | ALL             |
|           | colocitori   |         | & speed control. Please refer to section <b>5-6-2</b> .      |                  |                 |
|           |              | 4       | Speed / Torque control switch                                |                  |                 |
|           |              |         | Input contact <b>MDC</b> can be used to switch between speed |                  |                 |
|           |              |         | & torque control. Please refer to section <b>5-6-2</b> .     |                  |                 |
|           |              |         | Position / Torque control switch                             |                  |                 |
|           |              | 5       | Input contact <b>MDC</b> can be used to switch between       |                  |                 |
|           |              | Ŭ       | position                                                     |                  |                 |
|           |              |         | & torque control. Please refer to section 5-6-2.             |                  |                 |
|           |              |         | Position control (internal position command)                 |                  |                 |
|           |              | 6       | Input contacts <b>POS 1~POS 4</b> can be used to select 16   |                  |                 |
|           |              | Ŭ       | programmable preset position commands to control             |                  |                 |
|           |              |         | position. Please refer to <b>5-4-2</b> .                     |                  |                 |


New setting will become effective after RESET the power.




#### 5-2 Torque mode

Torque mode is used in applications such as printing machines, coil wiring machines, injection molding machines and specific application that requiring torque control.

Diagram below shows the torque control process diagram.



Analog voltage torque command is applied to the drive input terminals as shown below:

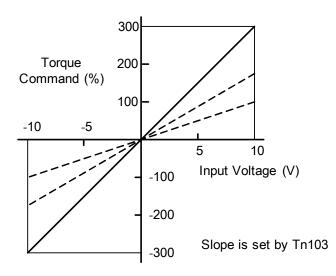


Caution!

Care should be taken in selection of required torque direction CW/CCW. Please refer to Chapter 5-2-4.



### 5-2-1 Analog Torque command Ratio.


Analog torque command ratio can be used to adjust the relationship between

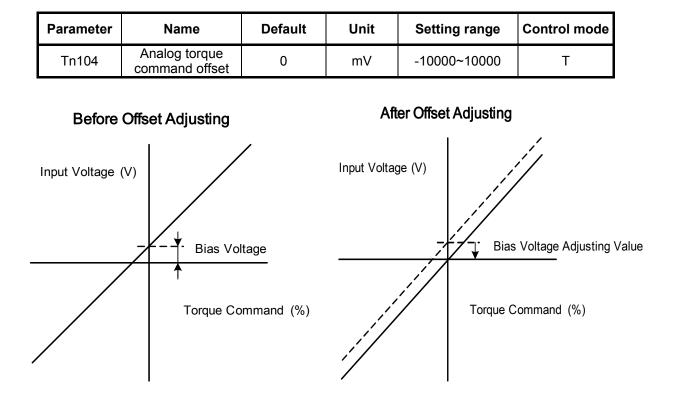
Input voltage torque command and actual torque command.

| Parameter Name |                                | Default | Unit  | Setting range | Control Mode |
|----------------|--------------------------------|---------|-------|---------------|--------------|
| Tn103          | Analog torque<br>command ratio | 300     | %/10V | 0~300         | Т            |

Setting example: refer to the following diagram.

- With Tn103 set to 300, a torque command input voltage of 10V, corresponds to 300% of rated torque. For input voltage of 5V, actual torque command will be 150% of rated torque.
- With Tn03 set to 200, a torque command input voltage of 10V, corresponds to 200% of rated torque. For input voltage of 5V, actual torque command will be 100%.






## 5-2-2 Adjusting the analog torque command offset

For a torque command of 0V, motor could possibly be rotating slowly.

To rectify this effect by adjusting offset value in parameter **Tn104** or use auto offset adjust feature. (Please refer to section **3-2-2**).

Note : To check and set the offset to zero, insert a link between analog torque command contact SIN(CN1-26) and analog ground contact AG (CN1-29).

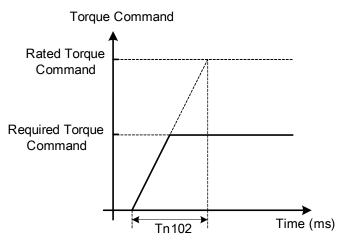




## 5-2-3 Torque command linear acceleration and deceleration

An smooth torque command can be achieved by enabling acceleration /Deceleration parameter Tn101.

| Parameter | Name                 | Setting | Description | Control<br>mode |
|-----------|----------------------|---------|-------------|-----------------|
|           | Linear acceleration/ | 0       | Disable     | т               |
| ★ Tn101   | deceleration method  | 1       | Enable      | I               |


Torque command accelleration/deceleration time,

is the time taken for the torque to rise from zero to the required level by Tn102.

As per diagram below:-

| Paramet | r Name                                           | Default | Unit | Setting Range | Control<br>mode |
|---------|--------------------------------------------------|---------|------|---------------|-----------------|
| ★ Tn102 | Linear acceleration<br>/deceleration time period | 1       | msec | 1~50000       | Т               |

New setting will become effective after RESET the power.



Setting examples:

(1) To achieve 50% of rated torque output in 10msec:

$$Tn102 = 10(msec) \times \frac{100\%}{50\%} = 20(msec)$$

(2) To achieve 75% of rated torque output in 10msec:

$$Tn102 = 10(msec) \times \frac{100\%}{75\%} = 13(msec)$$



## 5-2-4 Definition of torque direction

In torque mode, torque direction can be defined by one of the following three methods.

- (1) Input contacts RS1, RS2. (torque command CW/CCW selectable by programmable input)
- (2) Parameter Cn004. (motor rotation direction )
- (3) Input contact **TRQINV.** (reverse torque command)

#### Caution !

All 3 methods can be active at the same time.

User must ensure that correct selections are made for these three selections.

| Input Contact |                                        | Description | Control |
|---------------|----------------------------------------|-------------|---------|
| RS2           | RS1                                    | Description | mode    |
| 0             | 0                                      | Zero torque |         |
| 0             | Rotation in the current torque command |             | Т       |
| 1             |                                        |             |         |
| 1             | 1                                      | Zero torque |         |

Note: RS2 and RS1 contact status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels ( PNP/NPN) .

| Parameter<br>Signal | Name                                   | Setting | Descr                   | Control<br>mode         |     |
|---------------------|----------------------------------------|---------|-------------------------|-------------------------|-----|
|                     |                                        | No.     | Torque Control          | Speed Control           | S/T |
|                     | Motor rotation<br>direction (load end) | 0       | Counter Clockwise (CCW) | Counter Clockwise (CCW) |     |
| Cn004               |                                        | 1       | Clockwise (CW)          | Counter Clockwise (CCW) |     |
|                     | CW CO                                  | 2       | Counter Clockwise (CCW) | /) Clockwise (CW)       |     |
|                     |                                        | 3       | Clockwise (CW)          | Clockwise (CW)          |     |

| Input contact TRQINV | Description                                  | Control<br>mode |
|----------------------|----------------------------------------------|-----------------|
| 0                    | Rotation in current torque command direction | т               |
| 1                    | Reverse torque command direction             | 1               |

Note: Input contacts status "1" (ON) and "0" (OFF).

Please refer to 5-6-1 to set the required high /Low signal levels ( PNP/NPN) selection.



### 5-2-5 Internal Torque Limit

In torque Control mode, user can set internal torque limit values as required.

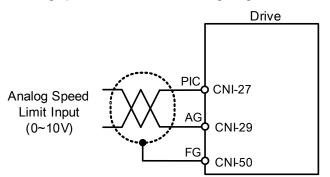
Set as below:-

| Parameter | Name                        | Default | Unit | Setting range | Control mode |
|-----------|-----------------------------|---------|------|---------------|--------------|
| Cn010     | CCW Torque<br>command limit | 300     | %    | 0~300         | ALL          |
| Cn011     | CW Torque<br>command limit  | -300    | %    | -300~0        | ALL          |

#### 5-2-6 Limiting Servomotor Speed during Torque Control

In torque control, input contacts SPD1 and SPD2 can be used for selecting one of the two methods below for setting speed limits.

- (1) External Analog command (Default) Signal is applied to terminals PIC & AG (pins 27& 29 on CN1)
- (2) Selection of Three presentable Limits (Tn105~Tn107) according to the table below.


| Input contact SPD2 | Input contact<br>SPD1 | Speed limit command                              | Control<br>mode |
|--------------------|-----------------------|--------------------------------------------------|-----------------|
| 0                  | 0                     | External analog<br>command<br><b>PIC(CN1-27)</b> |                 |
| 0                  | 1                     | Internal speed limit1<br>Tn105                   | Т               |
| 1                  | 0                     | Internal speed limit2<br>Tn106                   |                 |
| 1                  | 1                     | Internal speed limit3<br>Tn107                   |                 |

#### Caution! For achieving smooth speed response please refer to section 5-3-6.

Note: Input contacts status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels ( PNP/NPN) selection.

Below is the external analog speed limit command wiring diagram:



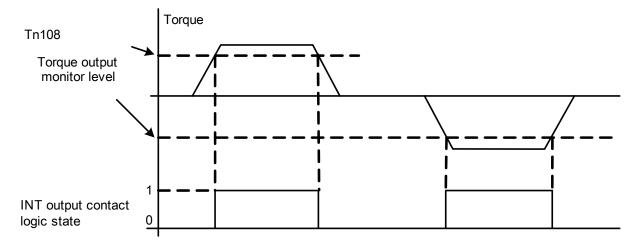
Internal presentable speed limit parameters for torque control mode are listed below:

| Parameter | Name                   | Default | Unit | Setting range | Control mode |
|-----------|------------------------|---------|------|---------------|--------------|
| Tn105     | Internal speed limit 1 | 100     | rpm  | 0~3000        | Т            |
| Tn106     | Internal speed limit 2 | 200     | rpm  | 0~3000        | Т            |
| Tn107     | Internal speed limit 3 | 300     | rpm  | 0~3000        | Т            |

These preset limits apply to both CW & CCW directions.

P.S also refer to page 6-11 for detail.




## 5-2-7 Additional torque control functions

## **Torque Output Monitor**

When the torque level in CW or CCW directions becomes greater than the value set in

| Parameter | Name                           | Default | Unit | Setting range | Control mode |
|-----------|--------------------------------|---------|------|---------------|--------------|
| Tn108     | Torque output monitor<br>level | 100     | %    | 0~300         | ALL          |

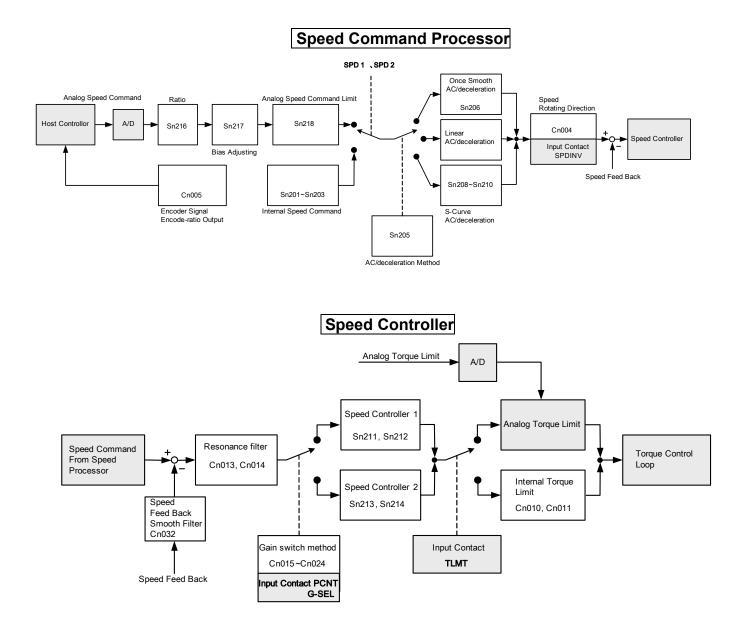
**Tn108** (torque level monitor value), the output contact **INT** is active.



Note: Input contacts status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

## Torque Smoothing Filter


Torque vibration can be diminution by setting an appropriate value in Cn034 (Torque command smoothing filter), In the other hand, this will cause a delay in the response time of the torque loop.

| Parameter | Name                       | Default | Unit | Setting range | Control mode |
|-----------|----------------------------|---------|------|---------------|--------------|
| Cn034     | Torque smoothing<br>filter | 0       | Hz   | 0~1000        | ALL          |

# 5-3 Speed Mode

Speed Mode is necessary for applications that require precisely speed control, such as weaving, drilling and CNC type machines. Diagrams below shows the speed control system in two parts.

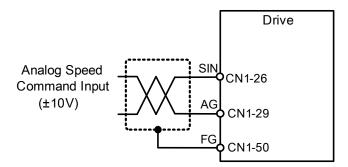
First stage shows **Speed processing and conditioning** and the second stage shows the **Speed controller** With PI/P control modes, and controller1&2 selection and interface with torque control stage.





## 5-3-1 Selection for speed command

In Speed control, input contacts SPD1 and SPD2 can be used for selecting one of the two methods below for setting speed limits.


- (1) External Analog command (Default) : Analog signal is input from terminals SIN & AG (pins 26& 29 on CN1)
- (2) Internal speed command: Selection of Three presentable Limits according to the table below.

| Input Contact SPD2 | Input Contact SPD1 | Speed Command                       | Control<br>Mode |
|--------------------|--------------------|-------------------------------------|-----------------|
| 0                  | 0                  | External analog command SIN(CN1-26) |                 |
| 0                  | 1                  | Internal speed command 1<br>Sn201   | S               |
| 1                  | 0                  | Internal speed command 2<br>Sn202   | 3               |
| 1                  | 1                  | Internal speed command 3<br>Sn203   |                 |

Note: Input contacts status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

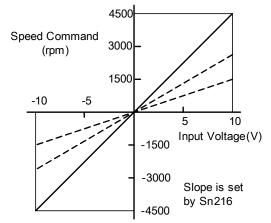
Diagram below shows the external analog speed command wiring:



Internal presetable speed limit parameters for speed command mode are listed below: These preset limits apply to both CW & CCW directions.

| Parameter | Name                        | Default | Unit | Setting range | Control mode |
|-----------|-----------------------------|---------|------|---------------|--------------|
| Sn201     | Internal speed<br>command 1 | 100     |      |               |              |
| Sn202     | Internal speed<br>command 2 | 200     | rpm  | -3000~3000    | S            |
| Sn203     | Internal speed<br>command 3 | 300     |      |               |              |




# 5-3-2 Analog speed command Ratio

Analog speed command ratio can be used to adjust the relationship between Input voltage speed command and actual speed command.

| Parameter | Name                          | Default | Unit    | Setting range | Control mode |
|-----------|-------------------------------|---------|---------|---------------|--------------|
| Sn216     | Analog speed<br>command ratio | 3000    | rpm/10V | 100~4500      | S            |

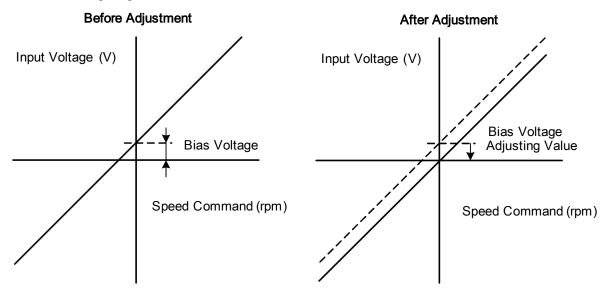
Setting Example:

- With Sn216 set to 3000, a speed command input voltage of 10V, corresponds to 3000rpm; for an input voltage of 5V speed command will be 1500rpm.
- (2) With **Sn216** set to 2000, a speed command input voltage of 10V, corresponds to 2000rpm, for an input voltage of 5 volts speed command will be 1000rpm.



## 5-3-3 Adjusting the analog reference offset

For a speed command of 0V, motor could possibly be rotating slowly.


To rectify this effect by adjusting offset value manually in parameter Sn217 or use auto offset adjust feature. (Please refer to section 3-2-2).

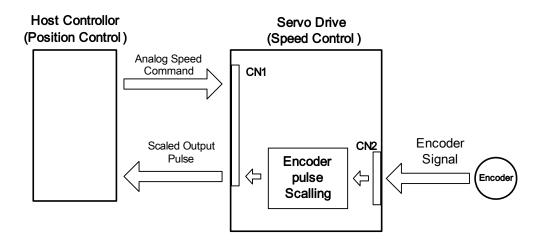
Note : To check and set the offset to zero, insert a link between analog torque command contact SIN(CN1-26) and analog ground contact AG (CN1-29).

| Parameter | Name                                     | Default | Unit | Setting range | Control mode |
|-----------|------------------------------------------|---------|------|---------------|--------------|
|           | Analog speed<br>command offset<br>adjust | 0       | mV   | -10000~10000  | S            |



Refer to the following diagrams:




# 5-3-4 Analog reference for speed command limit

A maximum limit for analog speed can be set by Sn218.

| Parameter | Name                          | Default            | Unit | Setting range | Control mode |
|-----------|-------------------------------|--------------------|------|---------------|--------------|
| Sn218     | Analog speed<br>command limit | Rate rpm<br>x 1.02 | rpm  | 100~4500      | S            |

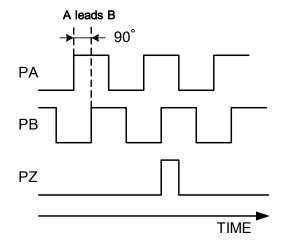
# 5-3-5 Encoder Signal Output

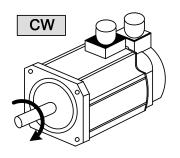
Servo motor encoder pulse signal can be output to a host controller to establish an external control loop.

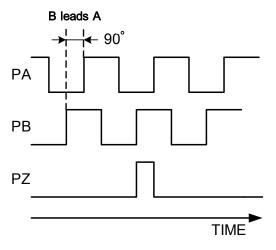


Set the required encoder Pulse Per Revolution (PPR) in parameter Cn005. Default output value is the actual encoder PPR.





| Parameter      | Name                          | Default                            | Unit  | Setting range  | Control<br>mode |
|----------------|-------------------------------|------------------------------------|-------|----------------|-----------------|
| <b>★</b> Cn005 | Encoder pulse<br>output scale | Encoder<br>Pulse Per<br>Revolution | pulse | 1~ Encoder PPR | ALL             |


New setting will become effective after re-cycling the power.


Encoder pulse output terminal description:

| Pin | Name                                    | Pin NO. of<br>CN1 | Control<br>mode |
|-----|-----------------------------------------|-------------------|-----------------|
| PA  | Encoder pulse output A Phase signal     | CN1-35            |                 |
| /PA | Encoder pulse output /A Phase<br>signal | CN1-36            |                 |
| PB  | Encoder pulse output B Phase<br>signal  | CN1-37            | ALL             |
| /PB | Encoder pulse output /B Phase<br>signal | CN1-38            |                 |
| ΡZ  | Encoder pulse output Z Phase<br>signal  | CN1-39            |                 |
| /PZ | Encoder pulse output /Z Phase signal    | CN1-40            |                 |







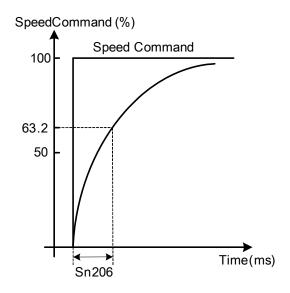




## 5-3-6 Smoothing the speed command

Sn205 can be used to eliminate speed overshoot and motor vibration by selecting one of the acceleration /deceleration methods which is suitable for the application from the table below.

| Parameter | Name                  | Setting                             | Description                                       | Control<br>mode |
|-----------|-----------------------|-------------------------------------|---------------------------------------------------|-----------------|
| Speed     | 0                     | Disable accel/decel smooth function |                                                   |                 |
|           | command               | 1                                   | Smooth accel/decel according to parameter Sn206   | 0               |
| Sn205     | accel/decel<br>smooth | 2                                   | Linear accel/decel according to parameter Sn207   | S               |
|           | method 3              | 3                                   | S-curve accel /decel according to parameter Sn208 |                 |


Above three methods of Acceleration/deceleration are described below.

## (1)Speed command smooth ac/deceleration:

Set **Sn205=1** to enable the use of speed command smooth acceleration/deceleration function.

| Parameter | Name                                              | Default | Unit | Setting range | Control<br>mode |
|-----------|---------------------------------------------------|---------|------|---------------|-----------------|
| Sn206     | Speed command smooth<br>accel/decel time Constant | 1       | msec | 1~10000       | S               |

Smooth acceleration/deceleration time corresponds to the time in which the speed command increases from 0 to 63.2% as shown in diagram below.





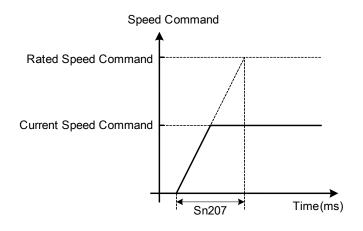
#### Setting example:

(1) To achieve 95% of speed command output in 30msec:

Set 
$$\text{Sn206} = \frac{30(\text{msec})}{-\ln(1-95\%)} = 10(\text{msec})$$

(2) To achieve 75% of speed command output in 30msec:

Set 
$$\text{Sn206} = \frac{30(\text{msec})}{-\ln(1-75\%)} = 22(\text{msec})$$


In= Natural log

#### (2)Speed command linear acceleration/deceleration function:

Set Sn205=2 to enable the use of speed command linear acceleration/deceleration function.

| Parameter | Name                                           | Default | Unit | Setting range | Control<br>mode |
|-----------|------------------------------------------------|---------|------|---------------|-----------------|
| Sn207     | Speed command linear accel/decel time constant | 1       | msec | 1~50000       | S               |

Linear acceleration/deceleration time corresponds to the time in which the speed increases (linearly) from zero to the rated speed. As shown in the diagram below.



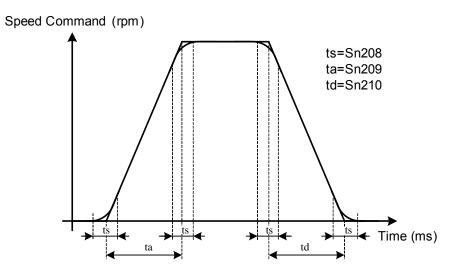
#### Setting examples:

(1) To achieve 50% of rated speed output in 10msec:

Set Sn207 = 
$$10(\text{msec}) \times \frac{100\%}{50\%} = 20(\text{msec})$$

(2) To achieve 75% of rated speed output in 10msec:

Set Sn207 = 
$$10(msec) \times \frac{100\%}{75\%} = 13(msec)$$




# S-Curve Speed Command Acceleration/Deceleration:

Set **Sn205=3** to enable the use of S-Curve speed command ac/deceleration function.

| Parameter | rameter Name                                      |     | Unit | Setting range | Control mode |
|-----------|---------------------------------------------------|-----|------|---------------|--------------|
| Sn208     | S-Curve speed command<br>accel/decel time setting | 1   | msec | 1~1000        | S            |
| Sn209     | S-Curve speed command acceleration time setting   | 200 | msec | 0~10000       | S            |
| Sn210     | S-Curve speed command deceleration time setting   | 200 | msec | 0~10000       | S            |

In applications where normal acceleration/deceleration on ramp up or ramp down bring in vibration of the mechanical system. S- curve acceleration/deceleration parameters could help to reduce vibration as diagram below:



**Caution! Setting Rule:**  $\frac{t_a}{2} > t_s$  ,  $\frac{t_d}{2} > t_s$ 



# 5-3-7 Setting rotation direction

Motor rotation direction in speed mode can be set by parameter **Cn004 (Motor rotation direction)** and input contact **SPDINV** according to the tables below.

### Caution!

#### Both methods can be operated at the same time.

Ensure that these parameters are set correctly for the required direction.

| Parameter | Name                                       | Setting | Descr                   | iption                  | Control<br>mode         |     |
|-----------|--------------------------------------------|---------|-------------------------|-------------------------|-------------------------|-----|
|           | Motor rotation                             | No.     | Torque control          | Speed control           |                         |     |
|           | direction (observation<br>from load side). | 0       | Counter Colckwise (CCW) | Counter Colckwise (CCW) |                         |     |
| Cn004     | CCW C                                      | CCW CC  | 1                       | Colckwise (CW)          | Counter Colckwise (CCW) | S/T |
|           | CW CO                                      | 2       | Counter Colckwise (CCW) | Colckwise (CW)          |                         |     |
|           |                                            | 3       | Colckwise (CW)          | Colckwise (CW)          |                         |     |

| Input contact<br>SPDINV | Description                                  |   |
|-------------------------|----------------------------------------------|---|
| 0                       | Rotation by speed command direction.         | c |
| 1                       | Rotation by reverse speed command direction. | S |

Note: Input contacts status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.



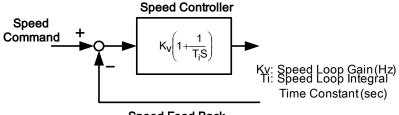
# 5-3-8 Speed Loop Gain

In speed mode there are two speed controller loops,

with separate Gain ( P) and Integral (I) functions.

Speed controllers 1 or 2 can be selected by setting one of the multi- function input terminals,

to selection G-SEL or by setting one of the parameters Cn20-Cn24 as required.


Please refer to section 5-3-11 section B for more details.

| Parameter | Name                                | Default | Unit       | Setting range | Control<br>mode |
|-----------|-------------------------------------|---------|------------|---------------|-----------------|
| Sn211     | Speed loop gain 1                   | 40      | Hz         | 10~450        | Pe/Pi/S         |
| Sn212     | Speed loop integral time constant 1 | 100     | x0.2<br>ms | 1~500         | Pe/Pi/S         |
| Sn213     | Speed loop gain 2                   | 40      | Hz         | 10~450        | Pe/Pi/S         |
| Sn214     | Speed loop integral time constant 2 | 100     | x0.2<br>ms | 1~500         | Pe/Pi/S         |

Diagram below shows the speed controller.

Setting a high speed loop gain or a lower speed loop integral time provides a faster speed control response time.

For more details refer to section **5-5**.



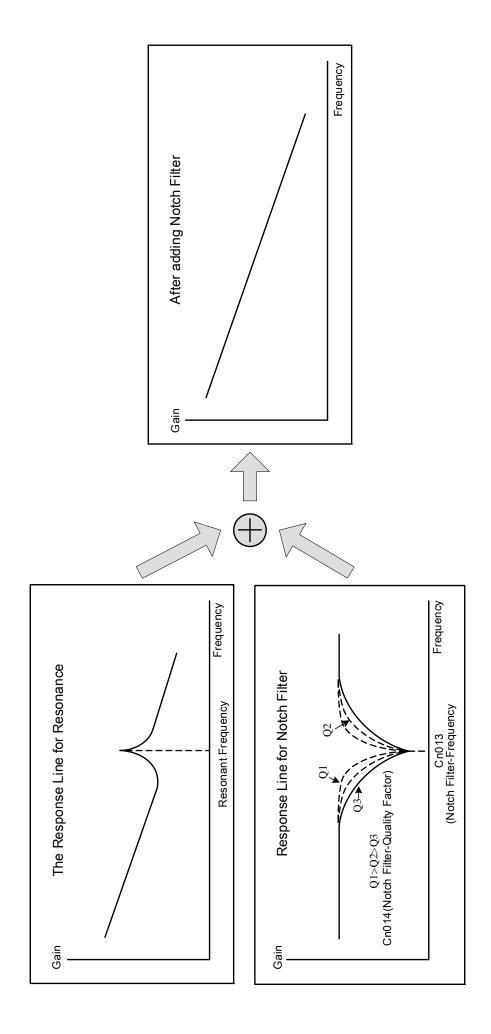
Speed Feed Back

# 5-3-9 Notch Filter

The function of the Notch filter is to suppress mechanical system resonance.

Resonance occurs due to low mechanical system rigidity (high springiness) of transmission systems used with servo motors such as couplings, bearings, lead screws, etc.

Enter the mechanical system vibration (resonance frequency) in parameter Cn013 (Notch Filter frequency) and adjust Cn014 to set the filter bandwidth scaling factor.


Lower the setting of Cn014 value, wider is the notch filter frequency bandwidth. The adjustment required depends on the application.

#### Caution!

#### If Cn013 is set to "0" the Notch filter is disabled.

| Parameter | Name                                      | Defaul<br>t | Unit | Setting range | Control mode |
|-----------|-------------------------------------------|-------------|------|---------------|--------------|
| Cn013     | Notch Filter frequency                    | 0           | Hz   | 0~1000        | Pi/Pe/S      |
| Cn014     | Notch Filter Band Width<br>Scaling factor | 7           | Х    | 1~100         | Pi/Pe/S      |







# 5-3-10 Torque limit of speed control mode

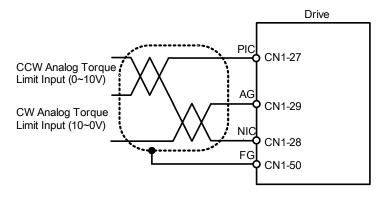
In speed mode, the motor torque limit input contact **TLMT** could be used to select one of the two methods below:

- Internal toque limit: Using default Cn010 (CCW Torque command limit ) and Cn011(CW Torque command limit ).
- (2) External analog command: Using two separate analog voltage command signals at input terminals
   PIC(CN1-27) to limit CCW torque and NIC(CN1-28) to limit CW torque.
   As shown in the table below:

| Input contact<br>TLMT | CCW torque command limit<br>source     | CW torque command limit source         | Control<br>mode |
|-----------------------|----------------------------------------|----------------------------------------|-----------------|
| 0                     | Cn010                                  | Cn011                                  | ALL             |
| 1                     | External analog command<br>PIC(CN1-27) | External analog command<br>NIC(CN1-28) | Pi/Pe/S         |

Note: Input contacts status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels ( PNP/NPN) selection.


#### Caution!

To use external analog torque command limit, If analog torque command limit is greater than internal torque command limit, the internal torque command limit has the priority over external analog torque command limit.

Internal Torque command limit is set as below.

| Parameter | Name                     | Default | Unit | Setting range | Control<br>mode |
|-----------|--------------------------|---------|------|---------------|-----------------|
| Cn010     | CCW torque command limit | 300     | %    | 0~300         | ALL             |
| Cn011     | CW torque command limit  | -300    | %    | -300~0        | ALL             |

The diagram below shows the external analog torque limit command wiring:





# 5-3-11 Gain Switched

### PI/P control mode selection (Section A)

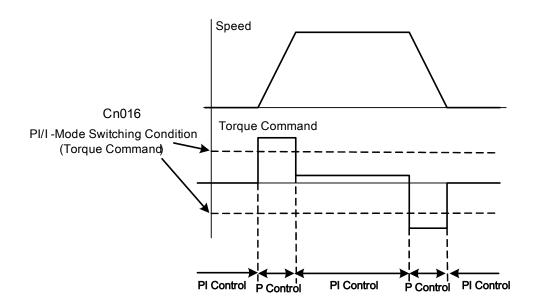
#### Automatic gain 1& 2 switch (Section B)

The selection of **PI/P control mode switch** and **Automatic gain 1& 2 switch** by parameters or from input terminals can be used in following conditions.

- (1) In speed control, to restrain acceleration/deceleration overshooting.
- (2) In position control, to restrain oscillations and decrease the adjusting time.
- (3) To decrease the possible noise caused by using Servo Lock function.

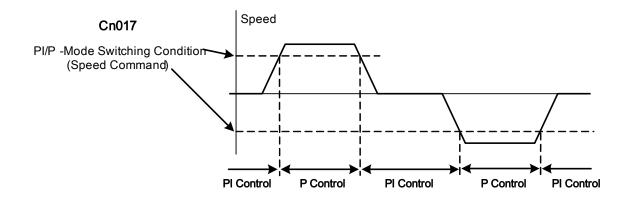
# (A) Switching between PI/P Control modes

Switch over from PI to P mode is determined by setting of parameter Cn015.0 and according to the selection options below:


| Parameter<br>Signal | Name                           | Setting | Description                                                                                                     | Control<br>mode |
|---------------------|--------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|-----------------|
|                     |                                | 0       | Switch from PI to P if the <i>torque</i> command is greater than Cn016                                          |                 |
| 0-015.0             | DI/D control                   |         | Switch from PI to P if the <b>speed</b> command is greater than <b>Cn017</b>                                    |                 |
| Cn015.0             | PI/P control<br>mode<br>switch |         | Switch from PI to P if the <i>acceleration</i> command is greater than Cn018                                    | Pi/Pe/S         |
| <u> </u>            | Switch                         |         | Switch from PI to P if the <b>position error</b> is greater than <b>Cn019</b>                                   |                 |
|                     |                                | 4       | Switch from PI to P by the input contact <b>PCNT</b> .<br>Set one of the multi function terminals to option 03. |                 |

| Parameter | Name                                                  | Default | Unit  | Setting range | Control<br>mode |
|-----------|-------------------------------------------------------|---------|-------|---------------|-----------------|
| Cn016     | PI/P control mode switch by<br>(torque command)       | 200     | %     | 0~399         | Pi/Pe/S         |
| Cn017     | PI/P control mode switch by<br>(speed command)        | 0       | rpm   | 0~4500        | Pi/Pe/S         |
| Cn018     | PI/P control mode switch by<br>(acceleration)         | 0       | rps/s | 0~18750       | Pi/Pe/S         |
| Cn019     | PI/P control mode switch by<br>(position error value) | 0       | pulse | 0~50000       | Pi/Pe/S         |

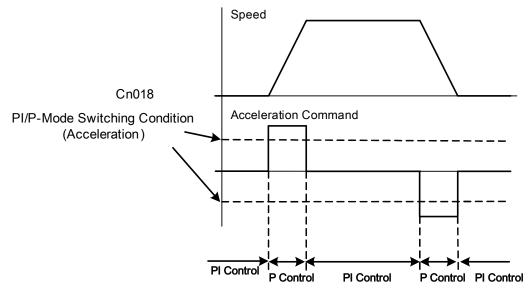



## (1) PI to P mode switch over by comparing Torque command.

When the *Torque command* is less than Cn016 PI control is selected. When the *Torque command* is greater than Cn016 P control is selected. As shown in diagram below:

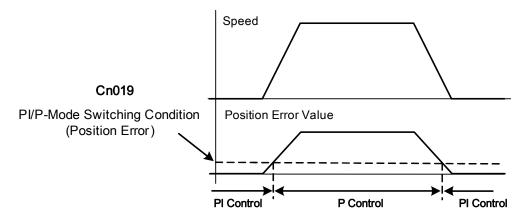


## (2) PI to P mode switch over by comparing Speed command.


When the *Speed command* is less than Cn017 PI control is selected. When the *Speed command* is greater than Cn017 P control is selected. As shown in diagram below:






## (3) PI to P mode switch over by comparing Acceleration command.

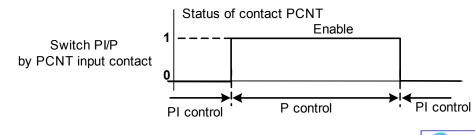
When the *Acceleration command* is **less** than **Cn018** PI control is selected. When the *Acceleration command* is **greater** than **Cn018** P control is selected. As shown in diagram below:



## (4) PI to P mode switch over by comparing *Position Error value*.

When the *Position Error value* is **less** than **Cn019** PI control is selected. When the *Position Error value* is greater than **Cn019** P control is selected. As shown in diagram below:




## (5) PI to P mode switch over by PCNT input contact.

When the **PCNT input contact** is open PI control is selected.

When the PCNT input contact is closed P control is selected.

Note: Input contacts status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.



# (B) Automatic gain 1& 2 switching

Selection of **Automatic gain 1& 2 switch** with different *P&I Gains* is possible by setting Parameter Cn 015.1 to one of the selections listed in the table below.

Parameter Cn 020 can be use for setting a switch delay time between different gains. (Gain 1 and 2)

| Parameter                      | Name   | Setting                                                                       | Description                                                                                                            | Control<br>Mode |
|--------------------------------|--------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                |        | 0                                                                             | Switch from gain 1 to 2 if <i>torque</i> command is greater than <b>Cn021.</b>                                         |                 |
|                                |        | 1                                                                             | Switch from gain 1 to 2 if <b>speed</b> command is greater than <b>Cn022.</b>                                          |                 |
| Cn015.1<br>gain 1& 2<br>switch | 2      | Switch from gain 1 to 2 if <i>acceleration</i> command is greater than Cn023. | Pi/Pe/S                                                                                                                |                 |
|                                | switch | 3                                                                             | Switch from gain 1to2 if <b>position error</b> value is greater than <b>Cn024.</b>                                     |                 |
|                                |        | 4                                                                             | Switch from gain 1 to 2 by input contact <b>G-SEL</b> . Set one of the multi function terminals to option 15 of Hn501. |                 |

| Parameter | Name                                                               | Default | Unit      | Setting Range | Control<br>Mode |
|-----------|--------------------------------------------------------------------|---------|-----------|---------------|-----------------|
| Cn020     | Automatic gain 1& 2 switch delay time.                             | 0       | x0.2 msec | 0~10000       | Pi/Pe/S         |
| Cn021     | Automatic gain 1& 2<br>switch condition<br><i>(torque command)</i> | 200     | %         | 0~399         | Pi/Pe/S         |
| Cn022     | Automatic gain 1& 2<br>switch condition<br>(speed command)         | 0       | rpm       | 0~4500        | Pi/Pe/S         |
| Cn023     | Automatic gain 1& 2<br>switch condition<br>(acceleration command)  | 0       | rps/s     | 0~18750       | Pi/Pe/S         |
| Cn024     | Automatic gain 1& 2<br>switch condition<br>(position error value)  | 0       | pulse     | 0~50000       | Pi/Pe/S         |

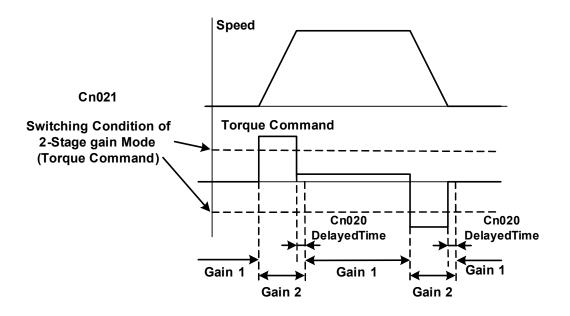
Note: Gain 1: is consisted of Pn310(position loop gain 1), Sn211(speed loop gain 1) and

 $\label{eq:sn212} \textbf{Speed loop integral time 1}.$ 

Gain 2: is consisted of Pn311(position loop gain 2), Sn213(speed loop gain 2) and

 $\ensuremath{\textbf{Sn214}}(\ensuremath{\textbf{Speed}}\xspace$  loop integral time 2 ).




## (1) Automatic gain 1&2 switch condition (by *torque command*).

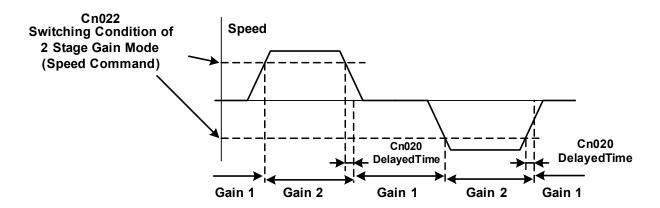
When torque command is less than Cn021 , Gain 1 is selected.

When torque command is greater than Cn021, Gain 2 is selected

When **Gain 2** is active and torque command becomes less than **Cn021** system will automatically switch back to **Gain 1** the switch time delay can be set by Cn020.

As shown in the diagram below:




## (2) Automatic gain 1&2 switch condition (by Speed command).

When speed command is less than Cn022 Gain 1 is selected.

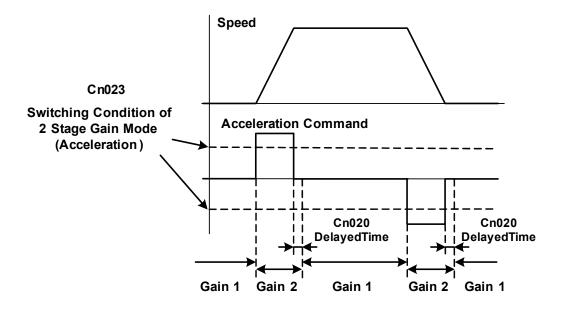
When speed command is greater than Cn022 Gain 2  $\,$  is selected.

When **Gain 2** is active and speed command becomes less than **Cn022** system will automatically switch back to **Gain 1** the switch time delay can be set by Cn020.

As shown in the diagram below :






## (3) Automatic gain 1&2 switch condition (by Acceleration command).

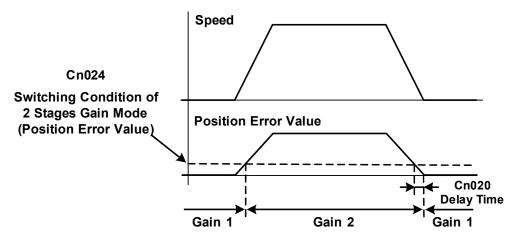
When acceleration command is less than Cn023 Gain 1 is selected.

When acceleration command is greater than Cn023 Gain 2 is selected.

When **Gain 2** is active and acceleration command becomes less than **Cn023** system will automatically switch back to **Gain 1** the switch time delay can be set by Cn020.

As shown in the diagram below :




## (4) Automatic gain 1&2 switch condition (by Position error value ).

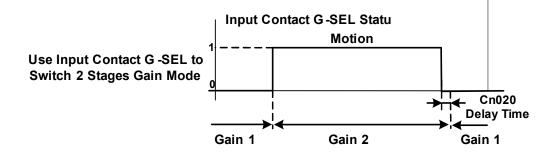
When position error value is less than Cn024 Gain 1 is selected.

When position error value is greater than Cn024 Gain 2 is selected.

When **Gain 2** is active and position error value becomes less than **Cn024** system will automatically switch back to **Gain 1** and the switch time delay can be set by Cn020.

As shown in the diagram below :






## (5) Automatic gain 1&2 switch condition by G-SEL input contact.

When the G-SEL input contact is open Gain 1 is selected.

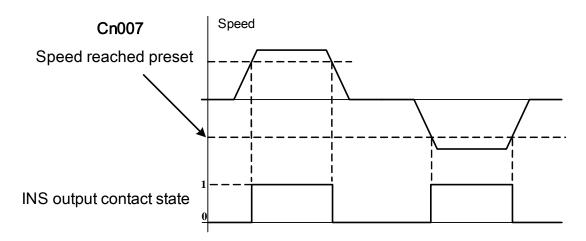
When G-SEL input contact is closed Gain 2 is selected.

When G-SEL input contact opens again then Gain 1 is selected and switch delay time can be set by Cn20. As shown in the diagram below :



Note: Input contacts status "1" (ON) and "0" (OFF).

Please refer to 5-6-1 for setting required high /Low signal levels (PNP/NPN) selection.




## 5-3-12 Other Functions

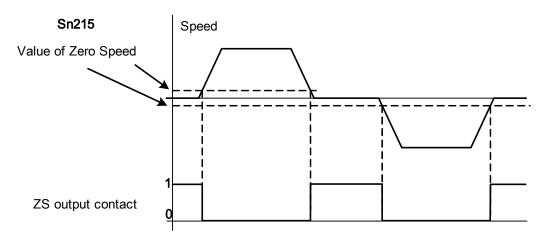
When the speed level in CW or CCW directions becomes greater than the value set in **Cn007** (Speed reached preset), the output contact **INS** operates.

# Speed reached preset

| Parameter<br>Signal | Name                    | Default            | Unit | Setting Range | Control Mode |
|---------------------|-------------------------|--------------------|------|---------------|--------------|
| Cn007               | Speed reached<br>preset | Rated rpm<br>× 1/3 | rpm  | 0~4500        | S/T          |



Note: Input contacts status "1" (ON) and "0" (OFF).

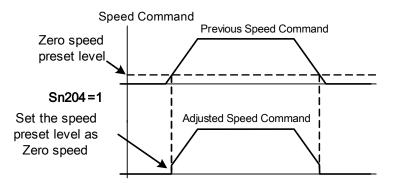

Please check section 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.



# Zero Speed preset

When the speed is less than the speed set in Sn215 (Value of ZS), the output contact **ZS** operates.

| Parameter<br>Signal | Name                | Default | Unit | Setting Range | Control Mode |
|---------------------|---------------------|---------|------|---------------|--------------|
| Sn215               | Value of zero speed | 50      | rpm  | 0~4500        | S            |




Note: Input contacts status "1" (ON) and "0" (OFF)

Please check section 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

| To Zero the speed command | according to preset level in | Sn215 set Sn204 to selection 1. |
|---------------------------|------------------------------|---------------------------------|
|---------------------------|------------------------------|---------------------------------|

| Parameter<br>Signal | Name       | Setting | Description                                                 | Control<br>Mode |
|---------------------|------------|---------|-------------------------------------------------------------|-----------------|
| Sp204               | Zero Speed | 0       | No action                                                   | S               |
| Sn204               | selection  | 1       | Regard Speed command as Zero. (According to Sn215 setting). |                 |



## Servo Lock

In speed mode: the Servo Lock is used to lock servo motor when input voltage command is not at 0V. When input contact **LOK** operates: The control mode changes to internal position control mode, it temporarily stop motor rotation. Please refer to section **5-6-1** for setting input contact **LOK** function.



## Speed Feed Back Smooth Filter

When there is system abnormal vibration or noise, Set **Cn032** (speed feed back smoothing filter) to restrain vibration or noise. Addition of this filter will delay the speed response of servo system.

| Parameter<br>Signal | Name                                | Default | Unit | Setting Range | Control Mode |
|---------------------|-------------------------------------|---------|------|---------------|--------------|
| Cn032               | Speed feed back<br>smoothing filter | 500     | Hz   | 1~1000        | Pe/Pi/S      |

## 5-4 Position mode

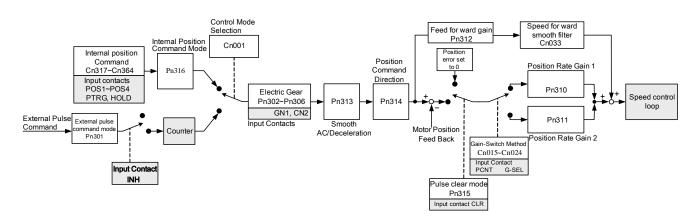
Position control mode is used for high-precision applications on machinery such as machine tools. The Position control mode offers *two methods* of control.

- External pulse input position command
- Internal position command.

In external pulse command input mode, the positioning command is signaled to the drive by a host Controller to achieve a fixed position.

In internal position command mode, 16 preset position commands can be set by parameters

## (Pn317~Pn364),


and can be activated by use of input contacts POS1 ~ POS4.

| Parameter<br>Signal | Name         | Setting | Description                                                                                   | Control<br>Mode |
|---------------------|--------------|---------|-----------------------------------------------------------------------------------------------|-----------------|
|                     |              |         | Position control (External pulse command)                                                     |                 |
| 1.0-001             | Control mode | 2       | Using one pulse command signal to control position.<br>Please refer to 5-4-3.                 |                 |
| <b>★</b> Cn001      | selection    |         | Position control (Internal pulse command)                                                     |                 |
|                     |              | 6       | Use input contacts to select 16 programmable preset position commands. Please refer to 5-4-2. |                 |

|                            | <i>· · · · · · · · ·</i>    |                                        |
|----------------------------|-----------------------------|----------------------------------------|
| Set parameter <b>Cn001</b> | (control mode selection) as | required according to the table below. |

New setting will become effective after re-cycling the power.

The diagram below shows the position loop control. Detailed functions are described in the following chapters.





## 5-4-1 External Pulse Command

Four types of external position pulse command signals can be interfaced,

These can be selected from the list below.

Position pulse signal logic can be selected Positive or negative as required.

| Parameter<br>Signal | Name                    | Setting | Description         | Control<br>Mode |
|---------------------|-------------------------|---------|---------------------|-----------------|
|                     |                         | 0       | (Pulse)+(Sign)      |                 |
| ★Pn301.0            | Position pulse          | 1       | (CCW)and (CW) pulse | Pe              |
|                     | command selection       | 2       | AB-Phase Pulsex2    |                 |
|                     |                         | 3       | AB-Phase Pulsex4    |                 |
| ★Pn301.1            |                         |         | Positive Logic      | Pe              |
|                     | command logic selection | 1       | Negative Logic      | ГU              |

New setting will become effective after re-cycling the power.

| Position pulse | Positive           | Logic      | Negative           | Logic      |
|----------------|--------------------|------------|--------------------|------------|
| command types  | CCW Command        | CW Command | CCW Command        | CW Command |
| (Pulse)+       | Pulse              |            | Pulse              |            |
| (Sign)         | Sign<br>/Sign — L  | Н          | Sign ————<br>/Sign | L          |
| (CCW)/         | Pulse              | L          | Pulse              | Н          |
| (CW) Pulse     | Sign<br>L<br>/Sign |            | Sign ————<br>/Sign |            |
| AB-Phase Pulse | Pulse /Pulse       |            | Pulse              |            |
|                | Sign               |            | Sign               |            |

Two types of pulse command can be connected, (Open collector) and (Line driver). Please refer to **section 2-2-1** for the pulse wiring method.

| Pulse Command<br>Types | Time Sequence Diagram of Pulse Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time Standard                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Pulse)+<br>(Sign)     | Pulse $t_{1}$ $t_{2}$ $t_{1}$ $t_{2}$ $t_{3}$ $t_{4}$ $t_{2}$ $t_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Line Driver:<br>t1, t2 $\leq 0.1\mu$ s<br>t3 > 3 $\mu$ s<br>$\tau \geq 1.0\mu$ s<br>( $\tau/T$ ) $\leq 50\%$<br>OpenCollector:<br>t1, t2 $\leq 0.2\mu$ s<br>t3 > 3 $\mu$ s<br>$\tau \geq 2.0\mu$ s<br>( $\tau/T$ ) $\leq 50\%$                                                                                                                                                               |
| (CCW)/<br>(CW) Pulse   | Pulse $1 \rightarrow 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{l} \text{LineDrive:} \\ \text{t1, t2} &\leq 0.1 \mu \text{s} \\ \text{t3} &> 3 \mu \text{s} \\ \hline \text{t3} &\geq 1.0 \mu \text{s} \\ (\mbox{t}/\mbox{T}) &\leq 50 \% \\ \hline \text{OpenCollector:} \\ \text{t1, t2} &\leq 0.2 \mu \text{s} \\ \text{t3} &> 3 \mu \text{s} \\ \hline \mbox{t} &\geq 2.0 \mu \text{s} \\ (\mbox{t}/\mbox{T}) &\leq 50 \% \\ \end{array}$ |
| AB-Phase Pulse         | Pulse $t_1 \rightarrow t_1 \rightarrow t_2 \rightarrow t_1 \rightarrow t_1 \rightarrow t_2 \rightarrow t_1 $ | $\begin{array}{l} \text{LineDrive:}\\ t1, t2 &\leq 0.1 \mu s\\ \tau &\geq 1.0 \mu s\\ (\tau/T) &\leq 50\% \end{array}$ $\begin{array}{l} \text{OpenCollector:}\\ t1, t2 &\leq 0.2 \mu s\\ \tau &\geq 2.0 \mu s\\ (\tau/T) &\leq 50\% \end{array}$                                                                                                                                            |

Pulse command timing should be in accordance with the time sequence standard below.

## Position command can be disabled (Inhibited) by extremal input contact INH.

| Input Contact<br>INH | Description                     | Control<br>Mode |
|----------------------|---------------------------------|-----------------|
| 0                    | Position Pulse command enabled  | Pe              |
| 1                    | Position Pulse command disabled | 16              |

Note: Input contacts status "1" (ON) and "0" (OFF)

Please check section 5-6-1 to set the required high /Low signal levels ( PNP/NPN) selection.



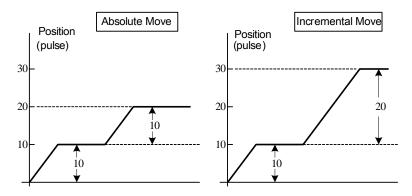
## 5-4-2 Internal Position Command

In internal position command mode, 16 preset position commands can be set by parameters (**Pn317~Pn364**), and can be activated by use of input contacts **POS1 ~ POS4**.

| Position<br>Command | POS4 | POS3 | POS2 | POS1 | Position Comma  | Position Command Parameter |          |
|---------------------|------|------|------|------|-----------------|----------------------------|----------|
| P1                  | 0    | 0    | 0    | 0    | Rotation Number | Pn317                      | Pn319    |
| ГІ                  | 0    | 0    | 0    | 0    | Pulse Number    | Pn318                      | - FII319 |
| P2                  | 0    | 0    | 0    | 1    | Rotation Number | Pn320                      | - Pn322  |
| P2                  | 0    | 0    | 0    | I    | Pulse Number    | Pn321                      | P11522   |
| P3                  | 0    | 0    | 1    | 0    | Rotation Number | Pn323                      | Pn325    |
| гJ                  | 0    | 0    | I    | 0    | Pulse Number    | Pn324                      | F11323   |
| P4                  | 0    | 0    | 1    | 1    | Rotation Number | Pn326                      | - Pn328  |
| Γ4                  | 0    | 0    | I    | I    | Pulse Number    | Pn327                      | - F11520 |
| P5                  | 0    | 1    | 0    | 0    | Rotation Number | Pn329                      | - Pn331  |
| ΓU                  | U    | I    | 0    | U    | Pulse Number    | Pn330                      | FIISST   |
| P6                  | 0    | 1    | 0    | 1    | Rotation Number | Pn332                      | - Pn334  |
| FU                  | 0    | I    | 0    | I    | Pulse Number    | Pn333                      | 111334   |
| P7                  | 0    | 1    | 1    | 0    | Rotation Number | Pn335                      | - Pn337  |
| Γ1                  | 0    | I    | I    | 0    | Pulse Number    | Pn336                      |          |
| P8                  | 0    | 1    | 1    | 1    | Rotation Number | Pn338                      | - Pn340  |
| 10                  | 0    | I    | I    | I    | Pulse Number    | Pn339                      |          |
| P9                  | 1    | 0    | 0    | 0    | Rotation Number | Pn341                      | Pn343    |
| 15                  | I    | 0    | 0    | 0    | Pulse Number    | Pn342                      | 1 110-10 |
| P10                 | 1    | 0    | 0    | 1    | Rotation Number | Pn344                      | Pn346    |
| 1 10                | I    | 0    | 0    | 1    | Pulse Number    | Pn345                      | 1 113-10 |
| P11                 | 1    | 0    | 1    | 0    | Rotation Number | Pn347                      | Pn349    |
| 1 1 1               | I    | 0    | -    | 0    | Pulse Number    | Pn348                      | 1 115-5  |
| P12                 | 1    | 0    | 1    | 1    | Rotation Number | Pn350                      | Pn352    |
| 1 12                | 1    | 0    | -    | -    | Pulse Number    | Pn351                      | 1 11332  |
| P13                 | 1    | 1    | 0    | 0    | Rotation Number | Pn353                      | Pn355    |
| 1 13                | 1    | 1    | 0    | 0    | Pulse Number    | Pn354                      | 11000    |
| P14                 | 1    | 1    | 0    | 1    | Rotation Number | Pn356                      | Pn358    |
| 1 17                | I    |      | 0    |      | Pulse Number    | Pn357                      | 111000   |
| P15                 | 1    | 1    | 1    | 0    | Rotation Number | Pn359                      | Pn361    |
| 0                   | 1    | •    | •    |      | Pulse Number    | Pn360                      |          |
| P16                 | 1    | 1    | 1    | 1    | Rotation Number | Pn362                      | Pn364    |
| 1 10                | 1    |      |      |      | Pulse Number    | Pn363                      |          |

Preset positions are programmable and can be selected according to the table below:



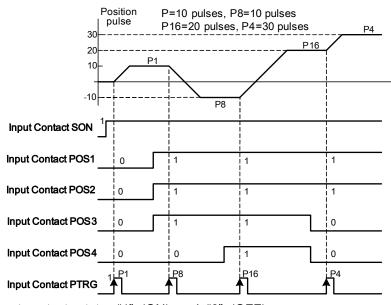

For **internal positioning** mode there are two types of moves **incremental** move or **absolute** move, selectable byparameter **Pn316** as below.

| Parameter<br>Signal | Name                      | Setting | Description      | Control<br>Mode |
|---------------------|---------------------------|---------|------------------|-----------------|
| A D=216             | Internal position         | 0       | Absolute mode    | Di              |
| ★Pn316              | command mode<br>selection | 1       | Incremental mode | Pi              |

#### New setting will become effective after re-cycling the power.

Example below shows the difference between absolute and incremental moves.

For two pulse commands of 10 pulse position pulse command and followed with another 20 pulse, the traveled positions will be different.




### PTRG. (Position Trigger).

Once any preset position is selected by input contacts **POS1~POS4** then require a trigger signal (**PTRG**) from the input contact , enable **PTRG to** start operation.

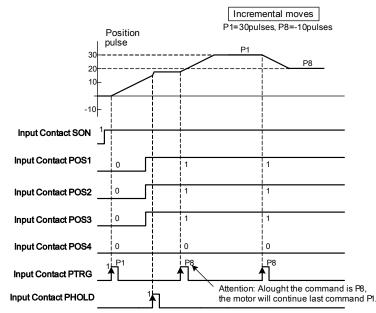
Diagram below shows an example for 4 different absolute encoders.

#### Absolute moves



Note: Input contacts status "1" (ON) and "0" (OFF)

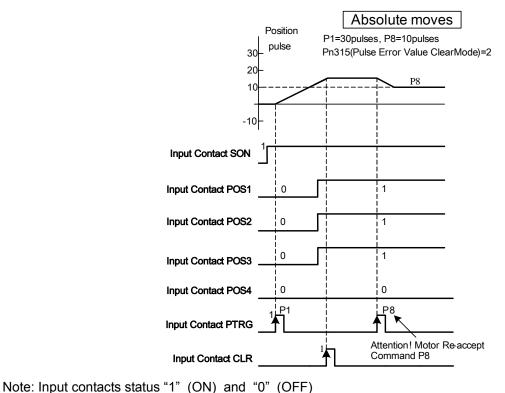
Please check section 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.




## PHOLD. (Position Hold)

The Position command can be inhibited (Held) at any time by input contact signal PHOLD.

Once PHOLD is initiated the motor will decelerate and stop.


As soon as the input contact **PTRG** is triggered again the original position command will be Completed. Diagram below shows PHOLD function with incremental encoder.



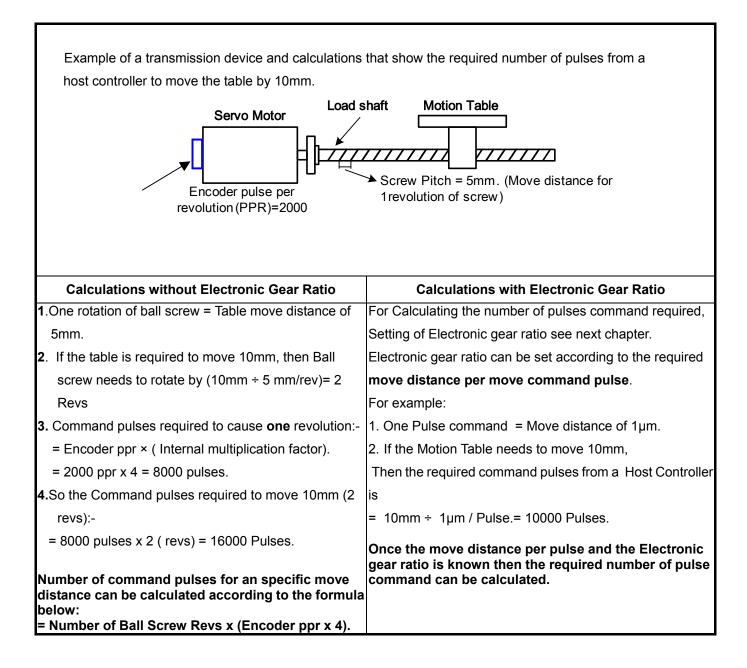
## CLR ( Clear position command).

If the CLR input is activated when a position command is in process then the motor will stop immediately and the remaining positioning pulses will be cleared. Parameter Pn315 must be set to 1 or 2 as required (refer to section 5-4-7).

Once the PTRG input contact is activated again then a new position command will be started according to the selection of input contacts POS1~POS4.



Please check section 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.


# 5-4-3 Electronic Gear

Electronic gear ratio parameter can be used to scale the command output pulse.

This would be useful in transmission applications where move distance per move command pulse

has to be scaled due to mechanical requirements.

Diagram and notes below describe the electronic gear ratio effect.





## **Electronic Gear Ratio Calculation**

Follow the Steps below:

#### 1. Define the requirements of the positioning system

Establish the following:

- Move distance per one revolution of load shaft.
- Servo motor Encoder ppr (Pulse Per Revolution). (please refer to section 1-1-2 Servo Motor Standards).
- Motor / load Shaft deceleration ratio.

### 2. Move distance per one move command pulse.

Define the move distance caused by the transmission system as a result of, one move command pulse from the host controller.

Ex: When 1 Pulse Command move = 1µm

If the Host Controller gives a move command of 2000 pulses, the transmission device will move by: -

 $2000 pulse \times 1 um/pulse = 2mm$  (The Electronic Gear Ratio must be set correctly).

#### 3. Calculate the Electronic Gear Ratio

Calculate the Electronic Gear Ratio according to the formula below:-

| Electronic Gear Ratio =                                                 | Encoder ppr ( Pulse Per Revolution) x 4                                   |  |  |  |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
|                                                                         | Move distance per load shaft revolution ÷ Move distance per command Pulse |  |  |  |  |  |
| If the deceleration ratio between motor and load shaft is $\frac{n}{m}$ |                                                                           |  |  |  |  |  |

(m = Motor Rotating number, n= Load Shaft Rotating Value), Then the formula for Electronic Gear Ratio is:



#### Warning!

The calculated Electronic Gear Ratio must be according to the conditions below, otherwise the servo drive and motor will not function correctly.

$$\frac{1}{200} \le ElectroniceGearRatio \le 200$$



# 4. Parameter Setting for Electronic Gear Ratio

Setting gear ratio Numerator and denominator parameters:

Numerator and denominator values of the calculated electronic gear ratio must be entered in the required parameters.

Parameter Setting Control Default Unit Name Signal Range Mode Pn302 Numerator of Electronic Gear Ratio 1 1~50000 Pi/Pe 1 Х Pn303 Numerator of Electronic Gear Ratio 2 1 Х 1~50000 Pi/Pe 1 Х 1~50000 Pn304 Numerator of Electronic Gear Ratio 3 Pi/Pe Pn305 Numerator of Electronic Gear Ratio 4 1 Х 1~50000 Pi/Pe ★Pn306 Denominator of Electronic Gear Ratio 1 Х 1~50000 Pi/Pe

These two values have to be integer and with a value within the specified range in the table below.

New setting will become effective after re-cycling the power.

This device provides 4 selections of Numerator for Electronic Gear Ratio.

Input contacts **GN1** and **GN2** can be used to select the required Numerator for the Electronic Gear Ratio According to the table below.

| Input<br>Contact GN2 | Input Contact<br>GN1 | Numerator of Electronic Gear Ratio            | Control<br>Mode |
|----------------------|----------------------|-----------------------------------------------|-----------------|
| 0                    | 0                    | Numerator of Electronic Gear Ratio 1<br>Pn302 |                 |
| 0                    | 1                    | Numerator of Electronic Gear Ratio 2<br>Pn303 | Pi/Pe           |
| 1                    | 0                    | Numerator of Electronic Gear Ratio 3<br>Pn304 | -               |
| 1                    | 1                    | Numerator of Electronic Gear Ratio 4<br>Pn305 |                 |

Note: Input contacts status "1" (ON) and "0" (OFF)

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

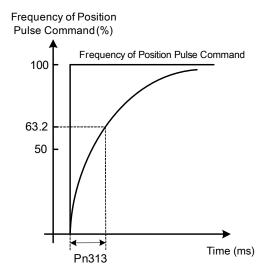


| Electronic Gear Ratio setting examples                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmission System                                                                                                               | Setting Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ball Screw<br>Servo Motor<br>Load shaft Motion Table<br>Load shaft Motion Table<br>Distance of 1 Rotating for Ball<br>Screw = 5mm | <ol> <li>Main positioning specifications:         <ul> <li>a) Load Shaft(Ball Screw) pitch<br/>move distance per revolution= 5mm</li> <li>b) Motor Encoder ppr (Pulse per revolution) = 2000pulses</li> </ul> </li> <li>Move distance per one pulse of move Command.<br/>Moving Distance of 1 Pulse Command =1µm</li> <li>Calculation of the Electronic Gear Ratio:<br/>ElectronicGear Ration = 2000pulse/rev×4<br/>5mm/rev÷lum/pulse = 8000<br/>5000</li> <li>Set the parameter of Electronic Gear Ratio:<br/>Numerator of Electronic Gear Ratio = 8000<br/>Denominator of Electronic Gear Ratio = 5000</li> </ol>                                                                                                                                                                    |
| Mechanical Disc<br>Load Shaft Deceleration Ratio 1/5<br>Servo Motor<br>Pulse Value of Rotating for Encoder<br>= 2500pulse/rev     | 1. Main positioning specifications:<br>a) Deceleration Ratio=1/5<br>b) Load Shaft(Mechanical Disc)Move Value per one<br>revolution=360 °<br>Motor Encoder ppr (Pulse per revolution)= 2500 pulses<br>2. Move distance per one pulse of move Command.<br>Distance for 1Pulse Command =0.1 °<br>3. Calculation of the Electronic Gear Ratio:<br>Electronic Gear Ratio = $\frac{2500 pulse/rev \times 4}{360^\circ \div 0.1^\circ / pulse} \times \frac{5}{1} = \frac{50000}{3600}$<br>4. Set the parameter of Electronic Gear Ratio:<br>Numerator of Electronic Gear Ratio = 50000<br>Denominator of Electronic Gear Ratio = 3600                                                                                                                                                        |
| Transmission Belt                                                                                                                 | 1. Main positioning specifications:<br>a) Deceleration Ratio=1/8<br>b) Load Shaft ( Idler) Move Value per revolution.<br>$= 3.14 \times 100 \text{ mm} = 314 \text{ mm}$<br>c) Motor encoder ppr ( Pulse Per Revolution) =<br>8192pulse<br>2. Move distance per pulse of move Command.<br>Distance for 1Pulse Command =10µm<br>3. Calculation the Electronic Gear Ratio:<br>Electronic Gear Ratio = $\frac{8192 \text{ pulse}/\text{ rev} \times 4}{314 \text{ mm} \pm 10 \text{ um}/\text{ pulse}} \times \frac{8}{1} = \frac{262144}{31400}$<br>4. Set the parameter of Electronic Gear Ratio:<br>Reduction of the fraction to make the Numerator and<br>Denominator less than 50000.<br>Numerator of Electronic Gear Ratio<br>32768<br>Denominator of Electronic Gear Ratio<br>3925 |



## **5-4-4 Smooth Acceleration**

Using the One Time Smooth Acceleration/Deceleration of Position Command"


It smoothes the position pulse command frequency.

| Parameter Name Signal |                                                  | Default | Unit | Setting Range | Control Mode |
|-----------------------|--------------------------------------------------|---------|------|---------------|--------------|
| ★Pn313                | Position command<br>Accel/Decel Time<br>Constant | 0       | msec | 0~10000       | Pi/Pe        |

New setting will become effective after re-cycling the power.

Time Constant of One Time Smooth Acceleration/Deceleration of Position Command:

The Time in which The Position Pulse Frequency increases (one time) from zero to 63.2% of Position Pulse Command Frequency.



Setting Examples:

(1) To achieve 95% of Position Pulse Command Frequency Output in 30msec:

$$Pn313 = \frac{30(msec)}{-\ln(1-95\%)} = 10(msec)$$

(2) To achieve 75% of Position Pulse Command Frequency Output in 30msec:

$$Pn313 = \frac{30(msec)}{-\ln(1-75\%)} = 22(msec)$$

Note:Above curve is a logarithmic In = Natural log.



# 5-4-5 Definition of Direction

In position mode, user can use Pn314 (Position Command Direction Definition) to define motor rotation direction. The setting is showed as follow:

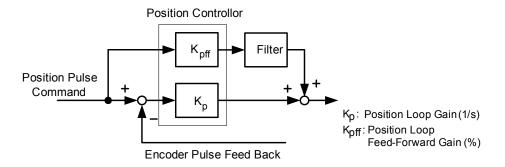
| Parameter<br>Signal | Name                                                                  | Setting | Description             | Control<br>Mode |  |
|---------------------|-----------------------------------------------------------------------|---------|-------------------------|-----------------|--|
| + Dn314             | ★Pn314 Definition of position command direction (from motor load end) | 0       | Clockwise (CW)          | Pi              |  |
| ★Pn314              |                                                                       | 1       | Counter Clockwise (CCW) | Pe              |  |

New setting will become effective after re-cycling the power.

## 5-4-6 Gain Adjustment

The table below shows the parameters for adjusting the position loop.

Two position loop gains can be selected from input contact terminals according to table below.


| Parameter<br>Signal | Name                             | Default | Unit | Setting Range | Control<br>Mode |
|---------------------|----------------------------------|---------|------|---------------|-----------------|
| Pn310               | Position Loop Gain1              | 40      | 1/s  | 1~450         | Pe/Pi           |
| Pn311               | Position Loop Gain 2             | 40      | 1/s  | 1~450         | Pe/Pi           |
| Pn312               | Position Feed-Forward Gain       | 0       | %    | 0~100         | Pe/Pi           |
| Cn033               | Speed Feed-Forward Smooth Filter | 40      | Hz   | 0~1000        | Pe/Pi           |

For selection methods refer to section. 5-3-11.

Diagram below shows the position controller. Adjust a higher gain value can reduse response time.

Position Feed-Forward Gain can also be used to shorten the positioning time.

refer to section 5-5 for Position Loop Gain Adjustment methods.



# 5-4-7 Clear the Pulse Offset

In position control mode, **parameter Pn315** (Pulse Error clear mode) has three modes can be select. **CLR** input contact is used to clear the pulse error as required according to the list below.

| Parameter | Name                      | Setting | Description                                                                                                                                                    | Control<br>Mode |
|-----------|---------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Pn315 Pu  |                           | 0       | When Input <b>CLR</b> contact, clears the pulse error value.                                                                                                   | Pe              |
|           | Pulse Error Clear<br>Mode | 1       | When Input <b>CLR</b> contact to cancels the position command, Stops the motor rotating, the pulse error value is cleared and mechanical Home signal is reset. | Pi<br>Pe        |
|           |                           |         | When Input <b>CLR</b> contact to cancels the position command, stops the motor rotating and the pulse error value is cleared.                                  | Pi              |

Note: Input contacts status "1" (ON) and "0" (OFF)

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.



# 5-4-8 Original Home

Home routine is used to find and set a reference point for correct positioning.

To set a HOME reference position, one of input contacts ORG (external sensor input), CCWL, or CWL can be used.

An encoder Z phase (marker pulse) can also be used as home reference and can be search by CW or CCW direction. Following Home routine selections are available for setting parameter Pn 365.0.

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Name                                            | Setting                                                                                                                                                                                                                                                                                                                                                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Control<br>Mode |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn365.0<br>Pn3 | -                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                  | Once the home routine is activated, motor will search for Home<br>Position switch in 1 <sup>st</sup> preset speed in <b>CCW</b> direction.<br>Input contacts CCWL or CWL can be used as the Home Reference<br>Switch.<br>Once Home reference switch is detected and complete, input contacts<br><b>CCWL</b> and <b>CWL</b> will act as limits input contact again.<br><b>Note:</b><br>When using this function, 1 or 2 setting of <b>Pn365.1</b> is not allowable.<br><b>Cn002.1</b> (CCWL & CWL Input terminal function) <b>must to set as 0</b> .                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                  | Once the home routine is activated, motor will search for Home<br>Position switch in 1 <sup>st</sup> preset speed in <b>CW direction</b> .<br>Input contacts CCWL or CWL can be used as the Home Reference<br>Switch.<br>Once Home reference switch is detected and complete, input contacts<br><b>CCWL</b> and <b>CWL</b> will act as limits input contact again.<br><b>Note:</b><br>When using this function, 1 or 2 setting of <b>Pn365.1</b> is not allowable.<br><b>Cn002.1</b> (CCWL & CWL Input terminal function) <b>must to set as 0</b> .                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Home input<br>contact,<br>It sets the<br>search | 2                                                                                                                                                                                                                                                                                                                                                                                                  | Once the home routine is activated , motor will search for Home<br>Position switch in 1 <sup>st</sup> preset speed in <b>CCW direction</b> and sets the input<br>contact ORG (external sensor input) as a Home reference when ORG<br>contact is activated.<br>If <b>Pn365.1=2</b> , it will directly find the closest Rising-Edge of <b>ORG</b><br>to be the Home position (without a need for Home reference),then it                                                                                                                                                         | Pi/Pe           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                               | stops in accordance with <b>Pn365.3</b> setting.<br>Once the home routine is activated , motor will search for Home<br>Position switch in 1 <sup>st</sup> preset speed in <b>CW direction</b> and sets the input<br>contact ORG (external sensor input) as a Home reference when ORG<br>contact is activated.<br>If <b>Pn365.1=2</b> , it will directly find the closest Rising-Edge of <b>ORG</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                  | to be the Home position (without a need for Home reference),then it<br>stops in accordance with <b>Pn365.3</b> setting.<br>Once the home routine is activated , motor will search for Home<br>position in 1st preset speed in <b>CCW</b> direction and sets the Home<br>reference<br>Servo drive start to find the Home position of the nearest Z phase.<br>(No need for Home reference)<br>When using this function, set <b>Pn365.1=2</b> .<br>After finished setting of <b>Z</b> Phase to the Home position, for the stop<br>method refer to the setting of <b>Pn365.3</b> . |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5               |



| Parameter | Name                                                     | Setting | Description                                                                                                                                                                                                                                                                                                                                              | Control<br>Mode |
|-----------|----------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|           | Once Reference<br>Home switch or                         | 0       | Once the Home Reference switch or signal is detected,<br>motor <b>reverses direction</b> in 2 <sup>nd</sup> speed to find the nearest <b>Z</b><br>Phase pulse and sets this as the Home position,<br>then stops in accordance with <b>Pn365.3</b> setting method.                                                                                        |                 |
| Pn365.1   | Signal, is found<br>set search<br>method<br>for the Home | 1       | Once the Home Reference switch or signal is detected,<br>motor <b>Continues in its direction</b> in 2 <sup>nd</sup> speed to find the<br>nearest <b>Z</b> Phase pulse and sets this as the Home position,<br>then stops in accordance with <b>Pn365.3</b> setting method.                                                                                | Pi/Pe           |
|           | position.                                                | 2       | When <b>Pn365.0=2</b> or <b>3</b> , it finds the rising edge of ORG to be the Home position, then stops in accordance with <b>Pn365.3</b> ;<br>When <b>Pn365.0=4</b> or <b>5</b> , it finds <b>Z</b> Phase pulse to be the Home, then stops in accordance with <b>Pn365.3</b> .                                                                          |                 |
|           |                                                          | 0       | Homing routine is <b>Disabled</b> .                                                                                                                                                                                                                                                                                                                      |                 |
| Pn365.2   | Setting of<br>Home Routine<br>Start method               | 1       | On power up and activation of <b>Servo on</b> the home routine is started automatically.<br>This method is useful for applications that do not require repeated home routines. No external home reference switch is required.                                                                                                                            | Pi/Pe           |
|           |                                                          | 2       | Use <b>SHOME</b> input contact to start a home routine.<br>In position mode, <b>SHOME</b> can be used to start a home routine<br>at any moment.                                                                                                                                                                                                          |                 |
| Pn365.3   | Stopping mode<br>after finding<br>Home signal.           | 0       | After detecting the Home signal, it <b>sets</b> this position to be the Home reference ( <b>Un-14</b> encoder feed back rotating number and <b>Un-15</b> encoder feed back pulse number are all 0), motor decelerates and stops.<br>Then it reverses direction in 2 <sup>nd</sup> speed to detect the Home Position again then it decelerates and stops. | Pi/Pe           |
|           |                                                          | 1       | After detecting the Home signal, it <b>sets</b> this position to be the Home reference ( <b>Un-14</b> encoder feed back rotating number and <b>Un-15</b> encoder feed back pulse number are all 0), motor decelerates and stops.                                                                                                                         |                 |

# Home Mode selection table

Pn365.0 / Pn 365.1 selections can be made for each application as required according to the table below:-

| Pn365.0<br>Pn365.1 | 0 | 1 | 2 | 3 | 4 | 5 |
|--------------------|---|---|---|---|---|---|
| 0                  | • |   |   |   | × | × |
| 1                  | × | × |   |   | × | × |
| 2                  | × | × |   |   |   |   |

• HOME routine available × HOME routine not available.



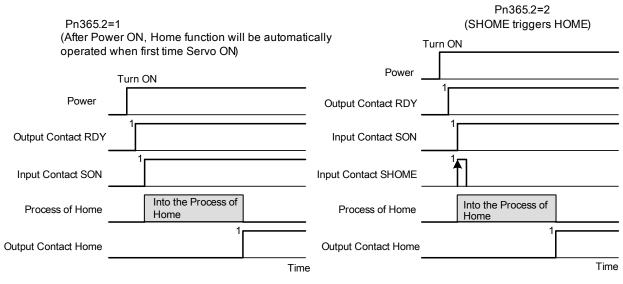
### Additional Home routine parameters

| Parameter<br>Signal | Name                                         | Default | Unit | Setting Range | Control Mode |  |  |  |
|---------------------|----------------------------------------------|---------|------|---------------|--------------|--|--|--|
| Pn366               | 1 <sup>st</sup> preset high speed of<br>HOME | 100     | rpm  | 0~2000        | Pi/Pe        |  |  |  |
| Pn367               | 2 <sup>nd</sup> preset low speed of HOME     | 50      | rpm  | 0~500         | Pi/Pe        |  |  |  |

Home search speed parameters 1st (Fast) and  $2^{nd}$  (Slow) speeds are set according to table below:

Parameters Pn368 and Pn 369 provide Home position offset feature for applications where the machine mechanical home position is a different position to the detected home position. This offset can be achieved by setting the two parameters below.

Once the detected home position is found in accordance with Pn365 (Home routine mode), then it will search by number of revolutions and pulses set in Pn368 and Pn 369 to find the new off set Home position.


| Parameter<br>Signal | Name                                          | Default | Unit  | Setting Range | Control<br>Mode |
|---------------------|-----------------------------------------------|---------|-------|---------------|-----------------|
| Pn368               | HOME Position Offset.<br>(No of Revolutions)  | 0       | rev   | -30000~30000  | Pi/Pe           |
| Pn369               | HOME position Bias Pulse value (No of pulses) | 0       | pulse | -32767~32767  | Pi/Pe           |



### Home routine Timing Chart

During the Home routine if the SON (Servo On) is not activated or any alarm happens,

Home routine is stopped and Home Complete output contact is reset (Cleared).



Note: Input contacts status "1" (ON) and "0" (OFF)

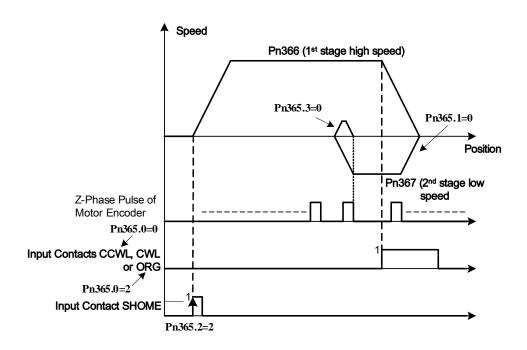
Please check 5-6-1 to set the required high /Low signal levels ( PNP/NPN) selection.



### Home Routine Speed /Position Timing Charts

Following Sections Show the Speed/Position Timing charts according to Pn 365.0 and Pn365.1 selections.

| Pn365.0<br>Pn365.1 | 0   | 1   | 2   | 3   | 4   | 5   |
|--------------------|-----|-----|-----|-----|-----|-----|
| 0                  | (1) | (2) | (1) | (2) | ×   | ×   |
| 1                  | ×   | ×   | (3) | (4) | ×   | ×   |
| 2                  | ×   | ×   | (5) | (6) | (7) | (8) |


★ No Home routine

#### (1)

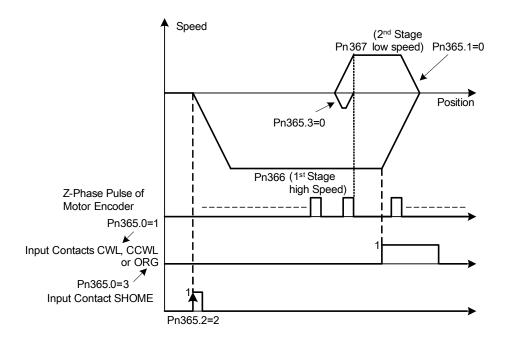
**Pn365.0=0** or **2** (After starting HOME routine, run **CCW** in 1<sup>st</sup> preset high speed for HOME Reference (**CCWL**, **CWL** or **ORG**).

**Pn365.1=0**(After finding HOME Reference, **reverse direction** in  $2^{nd}$  preset low speed to search for the nearest **Z** Phase pulse to be set as the HOME position).

**Pn365.2=2**(Input Contact SHOME to Start Home routine). **Pn365.3=0**(**Reverse search for** HOME position).






(2)

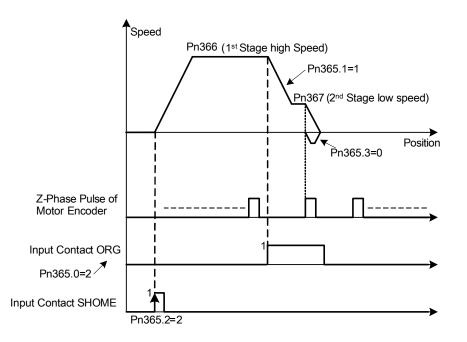
**Pn365.0=1**or **3.** After starting the HOME routine, run **CW** in 1<sup>st</sup> preset high speed to search for HOME Reference (**CWL**, **CCWL** or **ORG**).

**Pn365.1=0**. After finding HOME Reference, **reverse direction** in  $2^{nd}$  preset low speed to search for the nearest **Z** Phase pulse to be set as the HOME position.

Pn365.2=2 . Input Contact SHOME Starts the Home routine.

Pn365.3=0. Reverse search for HOME position.



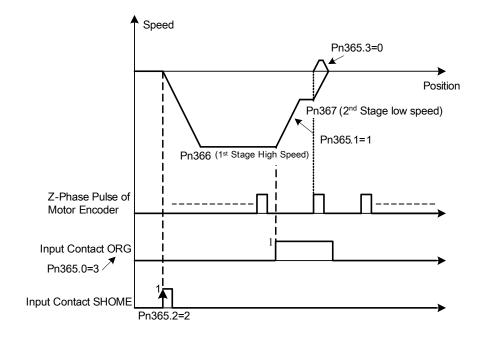

(3)

**Pn365.0=2.** After starting HOME routine, **run CCW** in 1<sup>st</sup> preset high speed to search for HOME Reference (**ORG**).

**Pn365.1=1.** After finding HOME Reference, **continues in the same direction** in 2<sup>nd</sup> preset low speed to find the nearest **Z** Phase to be set as the HOME position.

Pn365.2=2 Input Contact SHOME Starts the HOME routine.





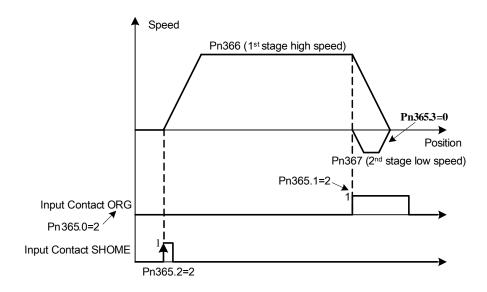

#### (4)

**Pn365.0=3**(After Starting HOME routine, run **CW** in 1<sup>st</sup> preset high speed to search for HOME Reference.( **ORG**)

**Pn365.1=1.** After finding HOME Reference, **continues in the same direction** in 2<sup>nd</sup> preset low speed to find the nearest **Z** Phase to be set as the HOME position.

Pn365.2=2 Input Contact SHOME Starts the HOME routine.

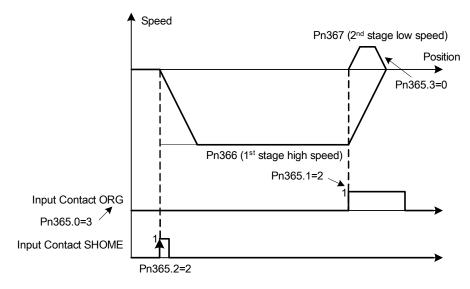





(5)

**Pn365.0=2.** After Starting HOME routine, run C**CW** in 1<sup>st</sup> preset high speed to search for HOME Reference.( **ORG**).

**Pn365.1=2** After Finding the HOME Reference, the Rising Edge of **ORG sets the** HOME Position. **Pn365.2=2** Input Contact **SHOME** Starts the HOME routine.


Pn365.3=0 Reverse search for HOME position



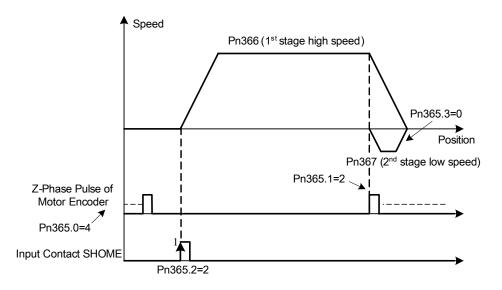
(6)

**Pn365.0=3.** After Starting HOME routine, run **CW** in 1<sup>st</sup> preset high speed to search for HOME Reference.( **ORG**).

**Pn365.1=2** After Finding the HOME Reference, the Rising Edge of **ORG sets the** HOME Position. **Pn365.2=2** Input Contact **SHOME** Starts the HOME routine.





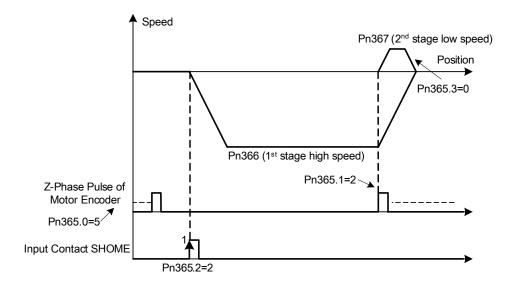

(7)

**Pn365.0=4.** After Starting HOME routine, run **CCW** in 1<sup>st</sup> preset high speed to search for the nearest Z phase pulse.

**Pn365.1=2** After Finding the Z phase pulse, set this position as the HOME position.

Pn365.2=2 Input Contact SHOME Starts the HOME routine.

Pn365.3=0 Reverse search for HOME position



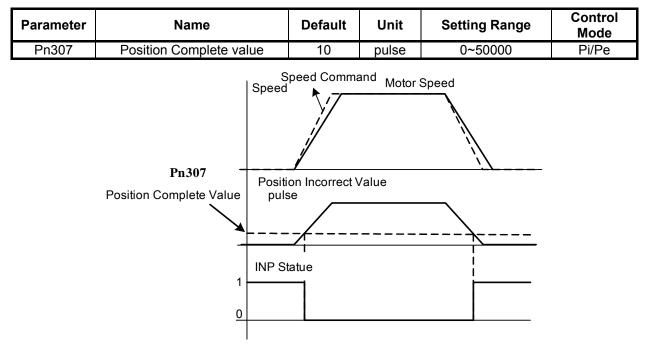

(8)

**Pn365.0=5.** After Starting HOME routine, run **CW** in 1<sup>st</sup> preset high speed to search for the nearest Z phase pulse.

**Pn365.1=2.** After Finding the Z phase pulse, set this position as the HOME position.

Pn365.2=2 Input Contact SHOME Starts the HOME routine.






### **5-4-9 Other Position Function**

### In position (Position Complete)

As long as the position  $\ensuremath{\textit{error value}}$  (counts) is less than the pulse counts set in

Pn307 (Position Complete value) then INP output contact will be activated.



Note: Input contacts status "1" (ON) and "0" (OFF)

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

#### Position error alarm

When the Position error value is greater than the preset pulse value of **Pn308** (Positive position error level) or **Pn309** (Negative position error level) this will generate **AL-11** (**Position error**) signal.

| Parameter | Name                          | Default | Unit  | Setting Range | Control<br>Mode |
|-----------|-------------------------------|---------|-------|---------------|-----------------|
| Pn308     | Positive position error level | 50000   | pulse | 0~50000       | Pi/Pe           |
| Pn309     | Negative position error level | 50000   | pulse | 0~50000       | Pi/Pe           |



### 5-5 Gain Adjustment

The Servo controller provides 3 control loops as diagram shown below: Control methods are: **Current** Control, **Speed** Control and **Position** Control.

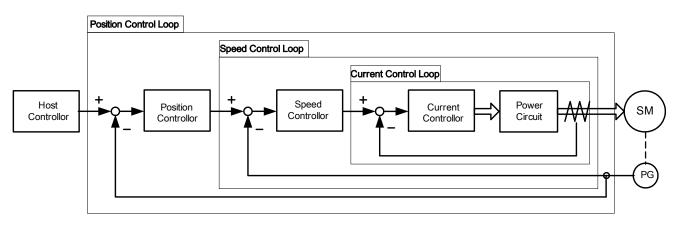



Diagram above shows the three control loops.

Current (Inner loop), Speed (middle loop) and position (outer loop).

Theoretically, the bandwidth of inner control loop must be higher than the bandwidth of the outer control loop, otherwise, the whole control system will become unstable, and cause vibration or abnormal response.

The relationship between the **band width** for these three control loops is as follows:

Current Loop (Inner) > Speed Loop (Middle)>Position Loop (outer).

The **default current control bandwidth** has already been set for optimum response, So **Only speed and position control loop gains** may be adjusted.

Table below shows the Gain adjustment parameters for the three control loops.

| Parameter | Name                                      | Default | Unit         | Setting Range | Control<br>Mode |
|-----------|-------------------------------------------|---------|--------------|---------------|-----------------|
| Sn211     | Speed Loop Gain 1                         | 40      | Hz           | 10~450        | Pe/Pi/S         |
| Sn212     | Speed Loop Integration Time<br>Constant 1 | 100     | x0.2<br>msec | 1~500         | Pe/Pi/S         |
| Sn213     | Speed Loop Gain 2                         | 40      | Hz           | 10~450        | Pe/Pi/S         |
| Sn214     | Speed Loop Integration Time<br>Constant 2 | 100     | x0.2<br>msec | 1~500         | Pe/Pi/S         |
| Pn310     | Position Loop Gain 1                      | 40      | 1/s          | 1~450         | Pe/Pi           |
| Pn311     | Position Loop Gain 2                      | 40      | 1/s          | 1~450         | Pe/Pi           |
| Pn312     | Position Loop Feed-Forward<br>Gain        | 0       | %            | 0~100         | Pe/Pi           |
| Cn025     | Load Inertia Ratio                        | 40      | x0.1         | 0~1000        | Pe/Pi/S         |



### Speed Loop Gain

Speed Loop Gain has a direct effect on the response Bandwidth of Speed Control Loop. Under the condition of no vibration or noise, when higher is the Speed Loop Gain Value is setting speed response is becoming faster.

If Cn025 (Load Inertia Ratio) is correctly set then,

Speed Loop Bandwidth = Sn211 (Speed Loop Gain1) or Sn213 (Speed Loop Gain2).

Load Inertia Ratio Formula is as below:

#### Speed Loop Integration Time Constant

Integral element in Speed Control Loop eliminates the steady state error.

Under the condition of no vibration or noise, reducing the speed loop Integral Time Constant can enhance system rigidity. If the Load Inertia Ratio is very high or the system has vibration factors, ensure that the Speed Loop Integral Time Constant is also high enough, otherwise the mechanical system would produce resonance easily.

Integral Time Constant for Speed Loop can be set using the formula below:

**Sn212**(Integral Time constant 1 of Speed Loop)  $\ge 5 \times \frac{1}{2\pi \times \text{Sn211}(\text{Speed Loop Gain 1})}$ 

Setting Example:

Assume: **Cn025** (Load Inertia Ratio) is correctly set, If target Speed Loop Bandwidth 100Hz, set **Sn211(**Speed Loop Gain 1)=100(Hz) then

**Sn212**(Integral Time Constant 1 of Speed Loop)  $\ge 5 \times \frac{1}{2\pi \times 100} = 40 (\times 0.2 \text{msec})$ 



### Position Loop Gain

Position Loop Gain has a direct effect on the response speed of Position Loop.

Under the condition that there is no vibration or noise from servo motor, increasing the Position Loop Gain Value can enhance the response speed and hence reduce the positioning time.

#### Position Loop Feed-Forward Gain

Using Position Loop Feed-Forward Gain can enhance the response speed.

If the Feed-Forward Gain value is setting too high, overshooting could occur and cause the **INP** (In Position) output contact to switch ON and OFF repeatedly.

SO monitor Speed Curve and **INP** (In Position Signal) at the same time then increase Feed-Forward Value slowly.

If Position Loop Gain is too high, Feed-Forward function will be insignificant.

#### Quick Parameters for Gain adjustment

Quick Gain adjust parameters are available for setting manually.

The related Gain Adjust parameters are listed in the Quick-Parameter leaflet for convenient reference.

Quick adjust parameters once altered are saved and become effective immediately,

without pressing the Enter-Key. The table below shows the Gain Adjust Quick-Parameters.

| Parameter      | Name                                      | Default | Unit         | Setting Range | Control<br>Mode |
|----------------|-------------------------------------------|---------|--------------|---------------|-----------------|
| <b>♦</b> qn401 | Speed Loop Gain 1                         | 40      | Hz           | 10~450        | Pe/Pi/S         |
| <b>♦</b> qn402 | Integral Time Constant 1 of<br>Speed Loop | 100     | x0.2<br>msec | 1~500         | Pe/Pi/S         |
| <b>♦</b> qn403 | Speed Loop Gain 2                         | 40      | Hz           | 10~450        | Pe/Pi/S         |
| <b>♦</b> qn404 | Integral Time Constant 2 of<br>Speed Loop | 100     | x0.2<br>msec | 1~500         | Pe/Pi/S         |
| <b>♦</b> qn405 | Position Loop Gain 1                      | 40      | 1/s          | 1~450         | Pe/Pi           |
| <b>♦</b> qn406 | Position Loop Gain 2                      | 40      | 1/s          | 1~450         | Pe/Pi           |
| <b>♦</b> qn407 | Position Loop Feed-Forward<br>Gain        | 0       | %            | 0~100         | Pe/Pi           |

Become effective immediately without pressing Enter-Key

### 5-5-1 Automatic Adjusting

This device provides ON-LINE Auto tuning, which can quickly and precisely measure Load Inertia and adjust the Gain automatically. Setting is according to the table below:

| Parameter | Name        | Setting | Description          | Control<br>Mode |
|-----------|-------------|---------|----------------------|-----------------|
| Cn002.2   | Auto tuping | 0       | Auto tuning Disabled | Pe/Pi/S         |
|           |             | 1       | Enable Auto tuning   | F6/F1/3         |

When Cn002.2 is set to 0 (Auto tuning Disabled), following Gain adjust parameters must be set.

| Parameter<br>Signal | Name                                |
|---------------------|-------------------------------------|
| Cn002.2             | Auto tuning                         |
| Sn211               | Speed Loop Gain 1                   |
| Sn212               | Speed-loop Integral time constant 1 |
| Sn213               | Speed loop Gain 2                   |
| Sn214               | Speed loop Integral time constant 2 |
| Pn310               | Position Loop Gain 1                |
| Pn311               | Position Loop Gain 2                |
| Pn312               | Position Loop Feed-Forward Gain     |

When **Cn002.2 is set to 1** auto tuning is enabled and the Servo controller will adjust the Servo Gain in accordance with **Cn026** (Rigidity Setting) and the measured Load Inertia Ratio by monitor parameter Un-19 (Load Inertia Ratio), when the Load Inertia Ratio is becomes stable,

Then set **0** in **Cn002.2** to cancel Auto tuning. At this moment, servo controller will record the measured Load Inertia Ratio into **Cn025** (Load Inertia Ratio).

If servo drive is used in a applications where there is no significant load variations, then monitor **Un-19** (Load Inertia Ratio) if this is stable then it is recommended that Auto tuning is not used.



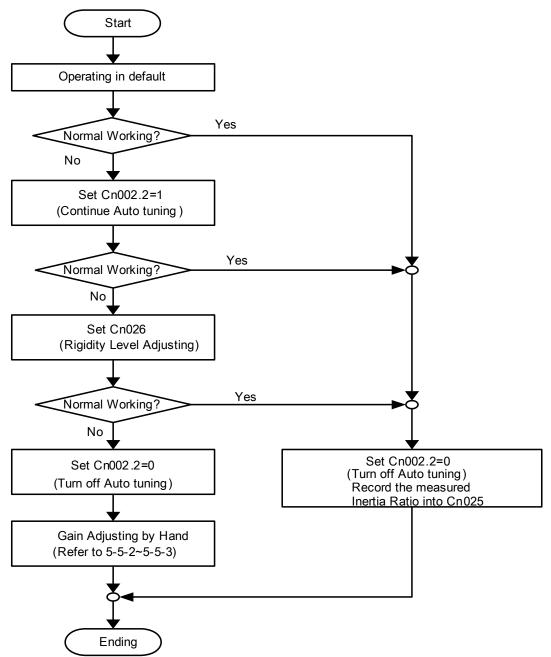
### Apply conditions of Auto tuning

The Servo drive provides Auto tuning and uses an advanced control technique "ON-LINE" to measure the Load Inertia Ratio to control the system to achieve default speed or Position Response Bandwidth.

System must comply with the conditions below, so that the Auto tuning can operate normally.

- (1) The timing from stop to 2000rpm needs be less than 1 second.
- (2) Motor speed is larger than 200rpm.
- (3) Load Inertia needs be 100 times less than the inertia of the motor.
- (4) External force or the variation of inertia ratio can not be excessive.

### **Rigidity Setting**


When Auto tuning is used, set the Rigidity Level depending on the various Gain settings for applications such as those listed below:

| Rigidity<br>Setting<br><b>Cn026</b> | Position Loop<br>Gain<br><b>Pn310 [1/s]</b> | Speed Loop<br>Gain<br><b>Sn211 [Hz]</b> | Speed-loop Integral<br>time constant 1<br>Sn212 [x0.2msec] | Mechanical<br>Rigidity | Application                                            |
|-------------------------------------|---------------------------------------------|-----------------------------------------|------------------------------------------------------------|------------------------|--------------------------------------------------------|
| 1                                   | 15                                          | 15                                      | 300                                                        | Low                    | Machines driven by timing                              |
| 2                                   | 20                                          | 20                                      | 225                                                        |                        | Belt, Chain or Gear: Large                             |
| 3                                   | 30                                          | 30                                      | 150                                                        |                        | Moving Table, Conveyor Belt.                           |
| 4                                   | 40                                          | 40                                      | 100                                                        |                        | The machines driven by<br>Ballscrew through            |
| 5                                   | 60                                          | 60                                      | 75                                                         | Middle                 | decelerator: Ordinary                                  |
| 6                                   | 85                                          | 85                                      | 50                                                         |                        | machines, Mechanics arms, robot arms, conveyor.        |
| 7                                   | 120                                         | 120                                     | 40                                                         |                        | The machines driven by                                 |
| 8                                   | 160                                         | 160                                     | 30                                                         |                        | Ballscrew: High precision<br>Machines, Metal engraving |
| 9                                   | 200                                         | 200                                     | 25                                                         |                        | Machine, Insertion Machine                             |
| Α                                   | 250                                         | 250                                     | 20                                                         | High                   | and IC inspection Machine.                             |



### Process for Auto tuning

The Diagram below show the process for Auto tuning.



Note: After Auto tuning is complete Set 0 in Cn002.2, otherwise it will not record the present measured Load Inertia Ratio.

If the power is cut off during Auto tuning then when the power is established, Servo controller will use the previously recorded setting of Load Inertia Ratio which is stored in parameter Cn025.



### 5-5-2 Manual Adjustting

Manual Gain adjustment is made available for applications when auto tune is not providing a good and stable system response, Or a system where there is no significant load variations and the auto tune is not used.

#### Manual Gain Adjustment in Speed control Mode

Step 1: Set Rigidity level in parameter Cn 26 (See section 5-5-1 for the selection table) and Cn25.

Step 2: If the Servo system includes a host controller which is used for positioning control, then it's **position loop Gain** should be set lower, relative to the servo drive Gain.

#### Step 3: Adjusting Speed Loop Gain 1 (Sn211):

- a) Increase Sn212 (Integral Time Constant 1of Speed Loop). Set a higher value than default or the set value when auto tune was unsuccessful.
- b) Increase the Speed Loop Gain (Sn211) until there is no vibration or noise.
- c) Then decrease the Speed Loop Gain (Sn211) slowly and increase Position Loop Gain of Host Controller until there is no vibration or noise.

#### Step 4: Adjusting Speed Loop Integral Time Constant 1 (Sn212):

Set the Integral Time Constant of Speed Loop for minimum time setting that without causing mechanical vibration.

**Step 5:** Finally, Slowly adjust the Speed Loop Gain, Position Loop Gain of Host Controller and Integral Time Constant of Speed Loop until the servo system provides the best response.

#### Manual Gain Adjustment in Position Control mode

Step 1: Set Rigidity level in parameter Cn 26 (See section 5-5-1 for the selection table) for the correct Load Inertia Ratio.

#### Step 2: Decrease Position Loop Gain 1 (Pn 310).

Set a lower value than default or the set value when auto tune was unsuccessful.

Set a relatively higher value in Sn212 (Integral Time Constant 1 of Speed Loop).

#### Step 3: Adjust Speed Loop Gain 1(Sn211).

Increase the Speed Loop Gain until there is no vibration or noise.

#### Step 4: Adjusting Position Loop Gain 1 (Pn310).

Slowly decrease the Speed Loop Gain again, then increase the Position Loop Gain until there is no vibration or noise.

#### Step 5: Adjusting Speed Loop Integral Time Constant 1 (Sn212).

Set the Integral Time Constant of Speed Loop for a minimum time without causing mechanical vibration.

**Step 6:** Finally, slowly adjusting the Speed Loop Gain, Position Loop Gain and the Integral Time Constant of Speed Loop until the servo system provides the best response.



### 5-5-3 Improving Resonance

The Servo drive provides the function of Gain Switching and Position Loop Feed-Forward Gain to improve system response.

Note: Both of these features must be used correctly to improve system response, otherwise the response will become worse. Refer to the description below:

### Gain Switch

Following Gain Switching features are provided:-

- a) Speed Loop Gain PI/P Switching
- b) 2-stage Gain Switching.

Purposes list:

- (1) To restrict overshoot during acceleration/deceleration in speed control.
- (2) Reducing the in position oscillations and providing shorter settling time in position control.
- (3) Decrease the noise caused when using Servo Lock.

For further details refer to section **5-3-11**.

### Position Loop Feed-Forward Gain

Position Loop Feed-Forward Gain can be used to reduce the error result from position control and improve the response speed.

Position loop Feed forward gain and position loop gain should be matched with. If adjusting to higher position loop gain, the feed fordward gain can be ignored. Oppositly, if the loop gain value is setting for a relatively low level, adjust position loop feed forward gain will improve system response time obviously.

The adjustment steps are as follows:

- Step 1: Refer to the procedures in sections 5-5-1~5-5-2 to adjust Speed and Position Gain.
- Step 2: Increase Pn312(Position Feed-Forward Gain) slowly, and observe the INP (Output Signal of In Position) at the same time and INP output should be activated faster.
- **Note:** The Position Loop Feed-Forward Gain can not be set too high, otherwise it will cause speed overshooting and **INP** (In Position output signal) will be switching On/Off repeatedly.



## 5-6 Other Functions

### 5-6-1 Programmable I/O Functions

#### Digital Inputs.

There are 13 DI (Digital Inputs) contacts and 4 DO (Digital Outputs) contacts which

are programmable as listed below:-

| Parameter | Name            | Setting |        | Description                          | Control<br>Mode |
|-----------|-----------------|---------|--------|--------------------------------------|-----------------|
|           |                 |         | Signal | Contactor Function                   |                 |
|           |                 | 01      | SON    | Servo On                             |                 |
|           |                 | 02      | ALRS   | Alarm Reset                          |                 |
|           |                 | 03      | PCNT   | PI/P Switching                       |                 |
|           |                 | 04      | CCWL   | CCW Limit                            |                 |
|           |                 | 05      | CWL    | CW Limit                             |                 |
|           |                 | 06      | TLMT   | External Torque Limit                |                 |
|           |                 | 07      | CLR    | Clear Pulse Error Value              |                 |
|           |                 | 08      | LOK    | Servo Lock                           |                 |
|           |                 | 09      | EMC    | Emergency Stop                       |                 |
|           |                 | 0A      | SPD1   | Speed 1                              |                 |
|           |                 | 0B      | SPD2   | Speed 2                              |                 |
|           |                 | 0C      | MDC    | Control Mode Switch                  |                 |
| ★Hn501.0  | DI-1            | 0D      | INH    | Position Command Inhibit             |                 |
| ★Hn501.1  | Digital Input 1 | 0E      | SPDINV | Speed Inverse                        |                 |
|           | programmable    | 0F      | G-SEL  | Gain Select                          | ALL             |
|           | Functions       | 10      | GN1    | Electronic Gear Ratio<br>Numerator 1 |                 |
|           |                 | 11      | GN2    | Electronic Gear Ratio<br>Numerator 2 |                 |
|           |                 | 12      | PTRG   | Position Trigger                     |                 |
|           |                 | 13      | PHOLD  | Position Hold                        |                 |
|           |                 | 14      | SHOME  | Start Home                           |                 |
|           |                 | 15      | ORG    | Home Position Reference (Origin)     |                 |
|           |                 | 16      | POS1   | Internal Position select 1           |                 |
|           |                 | 17      | POS2   | Internal Position select 2           |                 |
|           |                 | 18      | POS3   | Internal Position select 3           |                 |
|           |                 | 19      | POS4   | Internal Position select 4           |                 |
|           |                 | 1A      | TRQINV | Torque Inverse                       |                 |
|           |                 | 1B      | RS1    | Torque CW Selecting                  |                 |
|           |                 | 1C      | RS2    | Torque CCW Selecting                 |                 |

New setting will become effective after re-cycling the power.

| Parameter<br>Signal | Name                | Setting | Description                                                                                                       | Control<br>Mode |
|---------------------|---------------------|---------|-------------------------------------------------------------------------------------------------------------------|-----------------|
| <b>★</b> Hn501.2    | DI-1<br>Logic State | 0       | Input contact state. NO (Normally Open).<br>Connecting (IG24) to inputs, enables the<br>selected function.        | ALL             |
|                     | NO/NC Selection     | 1       | Input contact state. NC (Normally Closed).<br>Disconnecting (IG24) from inputs, enables<br>the selected function. |                 |

New setting will become effective after re-cycling the power.

Digital Inputs 2 to 13 (Hn 502 to Hn 513). Are programmable and the logic state NO/NC can also be selected same as that shown for digital input 1. See Hn501.



| Parameter | Name               | Description                                     | Control<br>Mode |
|-----------|--------------------|-------------------------------------------------|-----------------|
| ★Hn502    | DI-2 Programmable  |                                                 |                 |
| ★Hn503    | DI-3 Programmable  |                                                 |                 |
| ★Hn504    | DI-4 Programmable  | ]                                               |                 |
| ★Hn505    | DI-5 Programmable  | ]                                               |                 |
| ★Hn506    | DI-6 Programmable  | Refer to <b>Hn501</b> for programmable options. |                 |
| ★Hn507    | DI-7 Programmable  |                                                 | ALL             |
| ★Hn508    | DI-8 Programmable  |                                                 |                 |
| ★Hn509    | DI-9 Programmable  |                                                 |                 |
| ★Hn510    | DI-10 Programmable |                                                 |                 |
| ★Hn511    | DI-11 Programmable |                                                 |                 |
| ★Hn512    | DI-12 Programmable | ]                                               |                 |
| ★Hn513    | DI-13 Programmable |                                                 |                 |

**Warning!** If any of programmable Inputs of DI-1 ~ DI-13 are set for the same type of function then the logic state selection ( NO or NC selection) for these inputs must be the same type. Otherwise an Alarm will be displayed. AL-07 (**Multi-function contact setting error**).



#### Digital Outputs.

There are 4 programmable Digital Outputs according to the table below:

| Parameter            | Name       | Setting | Description Control Mode |                            |     |
|----------------------|------------|---------|--------------------------|----------------------------|-----|
|                      |            |         | Code                     | Contactor functions        |     |
|                      |            | 01      | RDY                      | Servo Ready                |     |
|                      |            | 02      | ALM                      | Alarm                      |     |
| ★Hn514.0<br>★Hn514.1 | DO-1 Logic | 03      | ZS                       | Zero Speed                 |     |
|                      | state      | 04      | BI                       | Brake Signal               | ALL |
|                      | State      | 05      | INS                      | In Speed                   |     |
|                      |            | 06      | INP                      | In Position                |     |
|                      |            | 07      | HOME                     | HOME                       |     |
|                      |            | 08      | INT                      | In Torque                  |     |
| <b>★</b> Hn514.2     | DO-1       | 0       | Close, whe               | n the output is activated. | ALL |
|                      | 50-1       | 1       | Open, whe                | n the output is activated  | ALL |

| Parameter | Name              | Description                              | Control<br>Mode |
|-----------|-------------------|------------------------------------------|-----------------|
| ★Hn515    | DO-2 Programmable |                                          |                 |
| ★Hn516    | DO-3 Programmable | Refer to Hn514 for programmable options. | ALL             |
| ★Hn517    | DO-4 Programmable |                                          |                 |

New setting will become effective after re-cycling the power.

#### Warning!

When programmable DO-1 ~ DO-4 are set for the same type of function alarm will be displayed.

AL-07 (Multi-function contact setting error).



### 5-6-2 Switch for the Control Mode

Set one of the programmable input terminals to MDC (Control mode) selection.

The input then will select the preset control mode, which is set by Parameter Cn001.

| Parameter      | Name         | Setting | Descrip                                      | otion          | Control<br>Mode |
|----------------|--------------|---------|----------------------------------------------|----------------|-----------------|
|                |              |         | MDC Input off                                | MDC Input On   |                 |
| <b>★</b> Cn001 | Control Mode | 3       | Position Control<br>(External Pulse Command) | Speed Control  | ALL             |
| CIUUT          | Selection    | 4       | Speed Control                                | Torque Control | ALL             |
|                | 5            | 5       | Position Control<br>(External Pulse Command) | Torque Control |                 |

#### Selections are listed below:

New setting will become effective after re-cycling the power.

Please check 5-6-1 to setting the input contact required high /Low signal levels (PNP/NPN selection).

### 5-6-3 Auxiliary Functions

Function of Input Contacts SON, CCWL and CWL can be set according to the list below:-

| Parameter | Name                               | Setting | Description                                                                                         | Control Mode |
|-----------|------------------------------------|---------|-----------------------------------------------------------------------------------------------------|--------------|
| ★Cn002.0  | SON                                | 0       | Use input contact <b>SON</b> to switch Servo On。                                                    | ALL          |
| HILL      | (Servo ON)                         | 1       | Servo on with Power on.<br>SON input contact not required.                                          | ALL          |
| Cn002.1   | CCWL and CWL<br>(Counter Clockwise |         | CCWL and CWL(external limits) are effective.<br>CCW and CW rotation is inhibited by<br>CCWL&CWL.    |              |
|           | Clockwise Limits)                  |         | CCWL and CWL(external limits) are<br>ineffective.<br>CCW&CW rotation is not limited by<br>CCWL&CWL. | ALL          |

New setting will become effective after re-cycling the power.



### 5-6-4 Brake Mode

Brake function for servo motor and the external mechanical brake if it is used can be set according to the table below. Set the brake mode as required for Servo off, Emergency Stop and CCW/CW rotation inhibit functions.

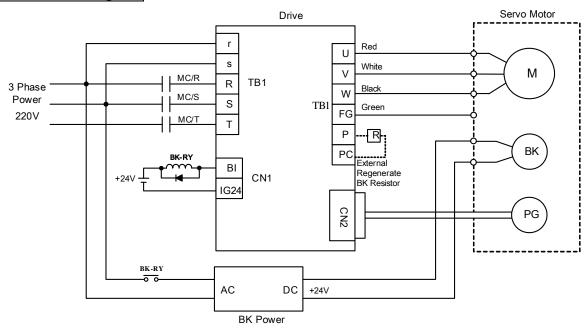
| Parameter | Name           | Setting | Desc          | Control<br>Mode  |     |
|-----------|----------------|---------|---------------|------------------|-----|
|           |                |         | Dynamic Brake | Mechanical Brake |     |
|           |                | 0       | Disable       | Disable          |     |
| Cn008     | Brake<br>Modes | 1       | Disable       | Enable           | ALL |
|           |                | 2       | Enable        | Disable          |     |
|           |                | 3       | Enable        | Enable           |     |

Note!

When the CCW/CW Drive Inhibit occur, the Cn009 has the higher priority than Cn008.

Example:

If Cn008 is set to 0 or 1 which means (no Dynamic Brake).


BUT Cn009= 1 (with Dynamic Brake), then the dynamic brake will be effective( enabled).

#### 5-6-5 Timing Diagram of Mechanical Brake

In applications with vertical loading, if the power is turned off, to prevent the load from falling due to gravity, a servo motor with electro-mechanical brake can be used.

This servo drive provides a brake output (**BI**) which can be used for controlling the external brake.

Timing of brake output signal can be set by parameter Cn003 (Output Time for electro-mechanical Brake).



### **Typical Circuit Diagram**



### Timing for Brake output signal

Set the required time for the operation of brake output signal (BI) according to the following. BI output can be used to control the function of an external electro-mechanical brake.

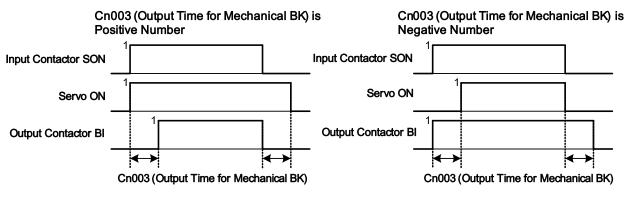
| Parameter | Name                                                  | Default | Default | Setting Range | Control Mode |
|-----------|-------------------------------------------------------|---------|---------|---------------|--------------|
|           | Output time setting for<br>Mechanical Brake<br>Signal | 0       | msec    | -2000~2000    | ALL          |

#### Note!

To use brake output signal set Cn008 (Brake mode) to selections 1 or 3 as required. When the servo system has vertical loading, please set Cn003 to a **Positive** Number. For definition of a time value with a positive or a negative sign refer to the following notes and timing diagrams.

#### (1) Cn003 set to a time value with a Positive sign.

AS soon as the input contact SON is switched on, Servo on is activated at the same time, then after a time delay set by parameter Cn003,Output Contact BI is switched on. (Signal to release the brake).


When SON input contact is switched off, BI output contact is also switched off (Signal to operate the brake).

Then after a time delay set by parameter Cn003, Servo ON is de-activated.

#### (2) Cn003 set to a time value with a Negative sign.

AS soon as the input contact SON is switched on, Output Contact BI is switched on at the same time. (Signal to release the brake). then after a time delay set by parameter Cn003, Servo on is activated.

When SON input contact is switched off, Servo ON is de-activated at the same time. then after a time delay set by parameter Cn003, Output Contact BI is switched off. (Signal to operate the brake).



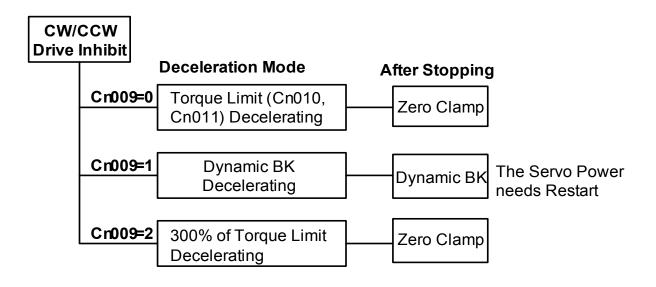
Note: Input contacts status of above time sequence diagram "1" (ON) and "0" (OFF). Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.



### 5-6-6 CW/CCW Drive Inhibit Function

Stopping method of the servo motor as a result of **CW/CCW Inhibit** function can be selected according to the list below:

| Parameter | Name                    | Setting | Description                                                                                                                                                                                                        | Control<br>Mode |
|-----------|-------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|           |                         | 0       | When torque limit reached the setting value of ( <b>Cn010,Cn011</b> ), servo motor deceleration to stop in the zero clamp status.                                                                                  |                 |
| ★Cn009    | CW/CCW drive<br>inhibit |         | Deceleration by using dynamic brake to stop<br>then hold in dynamic brake status. Cn009 setting<br>has priority over <b>Cn008</b> setting, it require<br>re-cycling power to take effect after setting<br>changed. | ALL             |
|           |                         | 2       | Once max torque limit (± 300% ) is detected then deceleration to stop with zero clamp.                                                                                                                             |                 |


New setting will become effective after re-cycling the power.

Note!

When the Drive Inhibit occurs in CCW/CW, the Cn009 has the higher priority than Cn008. Example:

If Cn008 is set to 0 or 1 which means (without Dynamic Brake).

BUT Cn009= 1 (with Dynamic Brake), then the dynamic brake will be effective( enabled).





## 5-6-7 Selecting for External Regeneration Resistor

In applications where a high inertia load is stopped rapidly, motor will generate an energy, which is regenerate power back to the servo drive (Regeneration energy)

- (1) Short deceleration time with heavy loads.
- (2) In vertical load applications.
- (3) High inertia rotary load applied to the motor shaft.

Part of the regeneration power will be absorbed by the drive main smoothing capacitors

If there is too much regeneration power which can not be totally absorbed by the capacitor then regeneration resistors can be used to absorb the excess power.

Built-in Regeneration Resistor specification is as below table.

| Drive Model  | Built-in Regeneration<br>Resistor Specifications |          | cifications Power(W) absorbed by         |                         |  |
|--------------|--------------------------------------------------|----------|------------------------------------------|-------------------------|--|
| Dirive model | Resistance(Ω)                                    | Power(W) | the built in Resistor<br>(Average Power) | Resistance Value<br>(Ω) |  |
| TSTA-15      | 50                                               | 60       | 24                                       | 50                      |  |
| TSTA-20      | 50                                               | 60       | 24                                       | 41                      |  |
| TSTA-30      | 25                                               | 60       | 24                                       | 23                      |  |
| TSTA-50      | 20                                               | 200      | 80                                       | 15                      |  |
| TSTA-75      | 12.5                                             | 200      | 80                                       | 9                       |  |

### Built-in Regeneration Resistor

The Regeneration Resistor which is built-in this device can absorb the Regeneration Power from acceleration and deceleration running or Vertical Loading.

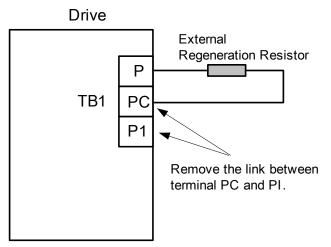
But for applications that the large load inertia causes the motor shaft to rotate, an external regeneration Resistor must be installed to protect the servo drive otherwise the servo drive can not function correctly. Select the resistor according to the specified values and if installing regeneration resistors in a parallel way to have more power absorb capacibility.

Ensure that the total resistance value does not smaller than the minimum resistance listed in the table above.



### Setting for the Power of External Regeneration Resistor

When using external regeneration resistor, the power value (Watts) must be set in parameter Cn012.


| Parameter | Name                                                   | Default | Unit | Setting Range | Control Mode |
|-----------|--------------------------------------------------------|---------|------|---------------|--------------|
|           | Watts setting for<br>External Regeneration<br>Resistor | 60 ~150 | W    | 0~10000       | ALL          |

### Wiring for External Regeneration Resistor

When external Regeneration Resistor is used, must remove the link between **PC** and **P1** on **TB1** Terminal. Then the resistor should be installed between terminals **P** and **PC**.

For safety, use of resistors with thermal protection is recommended.

The thermal switch contact can then be interlocked to disable drive or remove power if necessary. Refer to connection diagram below:



When installing Regeneration Resistors care must be taken as the resistor absorbs the regeneration power, and it is possible to generate the high temperatures above 100°C.

Provide the necessary cooling and use appropriate high temperature wires and ensure there has enough space between regeneration resistor and other materials.



#### Assess for an external resistor and calculate for the power consumption:

Use the table below to determine, if an external regeneration Resistor is necessary.

The table below shows the permitted number of no load operation cycles per minute for various servo motors in regeneration condition.

#### Defination of "No load operation cycles":

The servo motor, accertate from 0 speed to rated speed and deceleration from the rated speed to 0 speed. (No load)

The regeneration energy capacity (in Joules) which can be absorbed by the built-in resistor during no load acceleration/deceleration period, refer to the table list below.

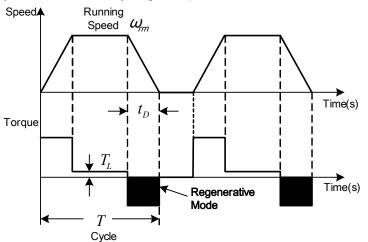
| Drive Model | Motor Model | Permitted number of no load operation cycles/min | Main Capacitor energy absorption capacity in Joules. $E_C$ (J). |
|-------------|-------------|--------------------------------------------------|-----------------------------------------------------------------|
|             | JSMA-LC03   | 433                                              |                                                                 |
| TSTA-15     | JSMA-SC02   | 1775                                             | 6                                                               |
|             | JSMA-SC04   | 1004                                             |                                                                 |
|             | JSMA-LC08   | 118                                              |                                                                 |
|             | JSMA-SC04   | 1004                                             |                                                                 |
| TSTA-20     | JSMA-SC08   | 321                                              | 9                                                               |
|             | JSMA-MA05   | 411                                              |                                                                 |
|             | JSMA-MH05   | 186                                              |                                                                 |
|             | JSMA-SC08   | 321                                              |                                                                 |
|             | JSMA-MA10   | 213                                              |                                                                 |
|             | JSMA-MB10   | 102                                              |                                                                 |
| TSTA-30     | JSMA-MH10   | 95                                               | 13                                                              |
|             | JSMA-MA15   | 145                                              |                                                                 |
|             | JSMA-MB15   | 73                                               |                                                                 |
|             | JSMA-MC15   | 45                                               |                                                                 |
|             | JSMA-MA15   | 484                                              |                                                                 |
| TSTA-50     | JSMA-MB15   | 245                                              | 13                                                              |
| 131A-30     | JSMA-MC15   | 152                                              | 15                                                              |
|             | JSMA-MB20   | 178                                              |                                                                 |
| TSTA-75     | JSMA-MB30   | 121                                              | 18                                                              |
| 1012-75     | JSMA-MC30   | 79                                               | 10                                                              |



#### Calculation for the allowable operation cycles per minute by motor speed and inertia.

The formula below should be used to to calculate the permitted number of cycles/min in **regenerative mode** in accordance with the actual **loading** and the **running speed** of the motor.

Allowable operation cycle/min. = 
$$\frac{\text{No load operation cycles}}{(1+\alpha)} \times (\frac{\text{Rated Speed}}{\text{MaxRunningSpeed}})^2$$


#### α= Load Inertia / Motor Inertia

If the required number of cycles /min is higher than the calculated value then an external regeneration resistor must be installed.

#### Calculation of the external regeneration resistor power (Watts).

Calculate the resistor watts according to the information and formulas below:

(Energy consumed by the motor internally is ignored).



| Step | ltem                                                                    | Formula                                                                                                                                                                                          | Description                                                                      |  |  |
|------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| 1    | Calculate the working Energy of the servo system.                       | Calculate the working Energy of the servo system.<br>$E_{M} = J_{T}\omega_{rm}^{2}/182$ $E_{M} = U_{T}\omega_{rm}^{2}/182$ $E_{M} = U_{T}\omega_{rm}^{2}/182$ $E_{M} = U_{T}\omega_{rm}^{2}/182$ |                                                                                  |  |  |
| 2    | Calculate the Energy<br>consumption by the load during<br>deceleration. | $E_L$ : The Energy during deceleration (J)<br>$T_L$ : Loading Torque(Nm)<br>$t_D$ : The Time from deceleration to stopping(s)                                                                    |                                                                                  |  |  |
| 3    | Calculate the Energy absorbed by internal main capacitor.               | $\boldsymbol{E}_{\boldsymbol{C}}$ Check the diagram above                                                                                                                                        | $E_{\rm C}$ : The Energy absorbed by the main capacitor (J)                      |  |  |
| 4    | Calculate the Energy which regeneration resistor consumes               | $E_{R}=E_{M}-(E_{L}+E_{C})$                                                                                                                                                                      | $E_{\rm \it R}$ : The Energy which Regeneration Resistor consumes (J)            |  |  |
| 5    | Calculate the Power for<br>regeneration resistor                        | $P_{R} = (E_{R}/T)/0.4$                                                                                                                                                                          | $P_R$ : Regeneration Resistor Power(W)<br>T: Operating cycle for servo system(s) |  |  |

**Note 1 : 0.4 in the formula for**  $P_R$  corresponds to 40% regeneration duty cycle.

# Note 2: If the $\,E_{\scriptscriptstyle L}\,$ can not be calculated, then let $\,E_{\scriptscriptstyle L}=0$ , then calculate ${\rm ER}$ .

In applications with regenerative loads, which cause reverse torque, a large amount of energy will flow back to the driver.



In such applications, calculate ER and hence regeneration resistor power according to the formula below.

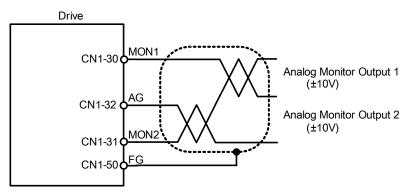
| Item                         | Formula                              | Description for Symbols                                                                                                                                                                      |
|------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calculate the working Energy | $E_G = (\pi/60)\omega_{rm,G}T_G t_G$ | $E_G$ : Working Energy during the regenerative period. (J)<br>$\omega_{rm,G}$ : Motor running speed during the regenerative period . (rpm)<br>$T_G$ : Loading Torque during the regenerative |
|                              |                                      | period (Nm)<br>$t_G$ : Regenerative Time. (s)                                                                                                                                                |

The formula for step 4 in the previous table will be:  $E_{\scriptscriptstyle R}=E_{\scriptscriptstyle M}$  -  $(E_{\scriptscriptstyle L}+E_{\scriptscriptstyle C})+E_{\scriptscriptstyle G}$ 

### 5-6-8 Fan Setting

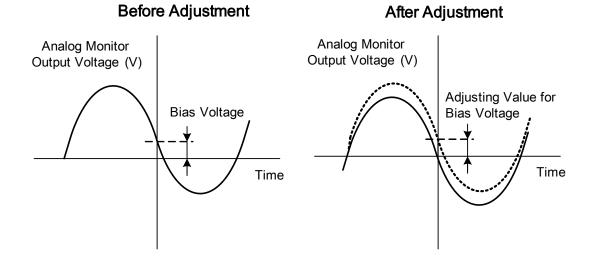
#### Availabel models that equipped with the fan (TSTA-50 & TSTA-75).

| Parameter | Name                        | Setting | Description                              | Control<br>Mode |
|-----------|-----------------------------|---------|------------------------------------------|-----------------|
|           |                             | 0       | Auto-run by internal temperature sensor. |                 |
| Cp021     | Cooling fan running<br>mode | 1       | Run when Servo ON                        |                 |
| Cn031     |                             | 2       | Always Running.                          | ALL             |
|           |                             | 3       | Disabled.                                |                 |


### 5-6-9 Analog Monitor

There are two analog output signals which can be used to monitor running Speed, Torque, Current and Position as follows:

| Parameters       |                                        | Name & Function                    | Default | Unit | Setting<br>Range | Control<br>Mode |
|------------------|----------------------------------------|------------------------------------|---------|------|------------------|-----------------|
|                  | Analog monitor output selection (MON1) |                                    |         |      |                  |                 |
|                  | Setting                                | Explanation                        |         |      |                  |                 |
|                  | 0                                      | Speed feedback                     | 2       |      | 0                |                 |
| Cn006.0          | 1                                      | Torque control                     |         |      |                  |                 |
| ( <u>Helele)</u> | 2                                      | Speed control                      |         | х    |                  | ALL             |
|                  | 3                                      | Pulse command input                | -       |      | 6                |                 |
|                  | 4                                      | Position deviation value           | _       |      |                  |                 |
|                  | 5                                      | Electrical angle                   |         |      |                  |                 |
|                  | 6                                      | Main circuit (Vdc Bus) voltage     | 1       |      |                  |                 |
| Cn006.1          | Analog monitor output selection MON2   |                                    |         |      |                  |                 |
| HODÓD            | Refer to                               | Cn006.0 for setting this parameter | 0       |      |                  |                 |




Circuit diagram for analog monitor shows below:



Analog monitor output zero offset can be adjusted by parameters Cn027&Cn028 as below.

| Parameter | Name                                  | Default | Unit  | Setting Range | Control Mode |
|-----------|---------------------------------------|---------|-------|---------------|--------------|
| Cn027     | Analog Monitor 1<br>Offset adjustment | 4       | x40mV | -250~250      | ALL          |
| Cn028     | Analog Monitor 2<br>Offset adjustment | 4       | x40mV | -250~250      | ALL          |



### 5-6-10 Factory setting parameter

This parameter can reset all parameter settings to default value (factory reset).

| Parameter<br>Signal | Name             | Setting | Description | Control<br>Mode                             |  |
|---------------------|------------------|---------|-------------|---------------------------------------------|--|
| <b>→</b> Cn029      | Reset parameters | 0       | Disabled    | ALL                                         |  |
| ★Cn029              | Reset parameters | 1       |             | All parameters are reset to default values. |  |

New setting will become effective after re-cycling the power.



# Chapter 6 Parameter

# 6-1 Explanation of Parameter groups.

There are 9 groups of parameters as listed below.

| Symbol | Description                   |
|--------|-------------------------------|
| Un-xx  | Status Display Parameters.    |
| dn-xx  | Diagnostics Parameters.       |
| AL-xx  | Alarm Parameters              |
| Cn-xx  | System Parameters             |
| Tn1xx  | Torque Control Parameters     |
| Sn2xx  | Speed Control Parameters      |
| Pn3xx  | Position Control Parameters   |
| qn4xx  | Quick Set-up Parameters       |
| Hn5xx  | Multi-function I/O parameters |

# Control Mode Code

| Signal | Control Mode                                       |
|--------|----------------------------------------------------|
| ALL    | All Control Mode                                   |
| Pi     | Position Control Mode(Internal Positional Command) |
| Ре     | Position Control Mode(External Pulse Command)      |
| S      | Speed Control Mode                                 |
| т      | Torque Control Mode                                |

# Definition of Symbols.

| Symbol | Explanation                                            |
|--------|--------------------------------------------------------|
| *      | Parameter becomes effective after recycling the power. |
| •      | Parameter is Effective without pressing the Enter key. |

# 6-2 Parameter Display Table

# System Parameters

| Parameter |                                                   | Name & Function                                                                                                                                                                 | Default | Unit        | Setting<br>Range | Control<br>Mode | Chapter |
|-----------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|------------------|-----------------|---------|
|           | Control Mode selection                            |                                                                                                                                                                                 |         |             |                  |                 |         |
|           | Setting                                           | Explanation                                                                                                                                                                     |         |             |                  |                 |         |
|           | 0                                                 | 0 Torque Control<br>1 Speed Control                                                                                                                                             |         |             |                  |                 | 5-1     |
|           | 1                                                 |                                                                                                                                                                                 |         |             |                  |                 |         |
| ★Cn001    | 2                                                 | Position Control (external pulse Command)                                                                                                                                       | _       |             | 0                |                 |         |
|           | 3                                                 | Position/Speed Control Switching                                                                                                                                                | 2       | Х           |                  | ALL             |         |
|           | 4                                                 | Speed/Torque Control Switching                                                                                                                                                  |         |             | 0                |                 |         |
|           | 5                                                 | Position/Torque Control Switching                                                                                                                                               |         |             |                  |                 | 5-6-2   |
|           | 6 Position Control (internal position<br>Command) |                                                                                                                                                                                 |         |             |                  |                 |         |
|           | SON (S                                            | Servo On) Input contact function                                                                                                                                                |         |             |                  |                 |         |
| ★Cn002.0  |                                                   |                                                                                                                                                                                 |         |             | 0                | ALL             |         |
| (Heeco)   | 0                                                 | Input Contact, Enables SON (Servo On).                                                                                                                                          | 0       | Х           | 1                |                 |         |
|           | 1                                                 | Input Contact has no function.<br>(SON is enabled when Power on).                                                                                                               |         |             |                  |                 |         |
|           | CCWL                                              | & CWL Input contact function.                                                                                                                                                   |         |             |                  |                 | 5-6-3   |
|           | Setting                                           |                                                                                                                                                                                 |         |             |                  |                 |         |
| Cn002.1   | 0                                                 | CCWL and CWL input contacts are able to                                                                                                                                         |         |             | 0<br> <br>1      |                 |         |
| HERE      |                                                   | control the drive inhibit of CCW and CW.                                                                                                                                        | 0       | Х           |                  |                 |         |
|           |                                                   | CCWL & CWL input contacts are not able to                                                                                                                                       |         |             |                  |                 |         |
|           | 1                                                 | control CCW and CW drive inhibit. CCW and                                                                                                                                       |         |             |                  |                 |         |
|           |                                                   | CW drive inhibit is disable.                                                                                                                                                    |         |             |                  |                 |         |
| Cn002.2   | Auto Tu                                           |                                                                                                                                                                                 | х       | 0<br> <br>1 | Pi<br>Pe<br>S    | 5-5-1           |         |
| × /       | Setting                                           | 0                                                                                                                                                                               |         |             |                  |                 |         |
| HEREE     | 0                                                 | , , ,                                                                                                                                                                           |         |             |                  |                 |         |
|           | I<br>EMC ro                                       | Continuously Auto Tuning is Enabled.<br>set mode selection                                                                                                                      |         |             |                  |                 |         |
|           |                                                   |                                                                                                                                                                                 |         |             |                  |                 |         |
| ★Cn002.3  | Setting<br>0                                      | Reset EMC signal is only available in Servo<br>Off condition (SON contact is open) and<br>reset AL-09 by ALRS signal.<br>P.S.) It is NOT allow to reset when SON is<br>applied. |         | x           | 0<br> <br>1      | ALL             |         |
|           | 1                                                 | When EMC status is released, AL-09 can be<br>reset on both Servo ON and Servo OFF<br>conditions.<br>Attention!<br>Ensure that the speed command are                             |         |             |                  |                 |         |
|           |                                                   | removed before the alarm is reset to avoid motor unexpected start.                                                                                                              |         |             |                  |                 |         |



| Parameter |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Name & | Function | Default | Unit | Setting<br>Range   | Control<br>Mode | Chapter        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|---------|------|--------------------|-----------------|----------------|
| Cn003     | Output time setting for Mechanical Brake Signal         Brake Signal Timing Sequence :         Cn003 (machinery brake signal output time ) is positive         Input Contacts SON         Output Contacts BI         Output Contacts BI         Cn003 (machinery brake signal output time )         Cn003 (machinery brake signal output time )         Cn003 (machinery brake signal output time ) is negative         Input Contacts SON         Output Contacts SON         Output Contacts SON         Servo ON         Output Contacts BI         Cn003 (machinery brake signal output time ) is negative         Input Contacts SON         Output Contacts BI         Cn003 (machinery brake signal output time )         Implementation a pin for dynamic brake signal(BI) as a         output signal before to perform this function. Refer to         sequence diagram above.         Note: Signal logic level status: 1 = ON.       0 = OFF.         Refer to section5-6-1 for setting contact the high & Low                                                                                                                                                                                                                                                                                     |        |          |         | msec | -2000<br> <br>2000 | ALL             | 5-6-5          |
| Cn004     | Motor rotate direction.(Inspect from the load side)         Image: Comparison of the load side         Image: Compare load side         Image: |        |          |         | x    | 0<br> <br>3        | S<br>T          | 5-2-4<br>5-3-7 |

| Parameter      |                                                                            | Name 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Function                         | Default | Unit                                       | Setting<br>Range | Control<br>Mode | Chapter |
|----------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------|--------------------------------------------|------------------|-----------------|---------|
| ★Cn005         | For defa<br>per revo<br>Encoder<br>of 1 to th<br><b>PPR = F</b><br>Ex:enco | r pulse output scale.<br>ault set to the rated enco-<br>plution, such as 2500pp<br>r ppr can be scaled by s<br>ne rated ppr of the enco-<br>Pulse per revolution.<br>order rated precision<br>Cn005 =1000, the outp                                                                                                                                                                                                                                                                | Encoder<br>pulse per<br>rotation | pulse   | 1<br> <br>Encoder<br>pulse per<br>rotation | ALL              | 5-3-5           |         |
|                | Analog                                                                     | monitor output select                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ion MON1                         |         |                                            |                  |                 |         |
|                | Setting                                                                    | Expla                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nation                           |         |                                            |                  |                 |         |
|                | 0                                                                          | Speed feedback                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |         |                                            |                  |                 |         |
| Cn006.0        | 1                                                                          | Torque control                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |         |                                            |                  |                 |         |
| HEEEE          |                                                                            | Speed control                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 2       |                                            | 0                |                 | 5-6-9   |
|                |                                                                            | Pulse command input                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |         | Х                                          |                  | ALL             |         |
|                |                                                                            | Position deviation value                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>a</b>                         |         |                                            | 6                |                 |         |
|                |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |         | ľ                                          |                  |                 |         |
|                |                                                                            | Electrical angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                               |         |                                            |                  |                 |         |
| 0000.4         |                                                                            | Main circuit (Vdc Bus)                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |         |                                            |                  |                 |         |
| <b>Cn006.1</b> |                                                                            | Analog monitor output selection MON2                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |         |                                            |                  |                 |         |
| 88890          | Refer to Cn006.0 for setting this parameter                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 0       |                                            |                  |                 |         |
| Cn007          | Speed p<br>ClockWi<br>When th                                              | d reached preset.<br>d preset level for ClockWise or Counter<br>Wise rotation.<br>In the speed is greater then preset level in Cn007<br>peed reached output signal INS will be activated                                                                                                                                                                                                                                                                                           |                                  |         | rpm                                        | 0<br> <br>4500   | S<br>T          | 5-3-12  |
|                | Brake N                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |         |                                            |                  |                 |         |
| Cn008          |                                                                            | ble Brake modes for Servo off, EMC and W drive inhibit.                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | 2       | х                                          | 0<br> <br>3      | ALL             | 5-6-4   |
|                | -                                                                          | Yes<br>W drive inhibit mode                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                              |         |                                            |                  |                 |         |
| 4.0.000        |                                                                            | CW/CCW drive inhibit mode         Setting       Explanation         0       When torque limit reached the setting value of (Cn010,Cn011), servo motor deceleration to stop in the zero clamp condition.         1       Deceleration by using dynamic brake to stop then hold in dynamic brake status. Cn009 setting has priority over Cn008 setting, it require re-cycling power to take effect after setting changed.         0       Once max torque limit (± 300%) is detected |                                  | 0       | x                                          | 0<br> <br>2      | ALL             | 5-6-6   |
| ★Cn009         | 1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |         |                                            |                  |                 |         |
|                | 2                                                                          | then deceleration to st applied when stop.                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |         |                                            |                  |                 |         |

| Parameter      |                                             | Name & Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default        | Unit | Setting<br>Range | Control<br>Mode | Chapter         |
|----------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|------------------|-----------------|-----------------|
| Cn010          | Ex: For                                     | orque command Limit.<br>a torque limit in CCW direction which is twice the<br>orque , set Cn10=200.                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300            | %    | 0<br> <br>300    | ALL             | 5-2-5<br>5-3-10 |
| Cn011          | Ex: For<br>rated to                         | rque command Limit.<br>a torque limit in CW direction which is twice the<br>orque, set Cn11=-200.                                                                                                                                                                                                                                                                                                                                                                                                                                     | -300           | %    | -300<br> <br>0   | ALL             | 5-2-5<br>5-3-10 |
| Cn012          | Refer to<br>and set                         | setting for External Regeneration Resistor<br>o section 5-6-7 to choose external Regen resister<br>its power specification in Watts of Cn012.<br>is default value will change depend on servo                                                                                                                                                                                                                                                                                                                                         | 60<br>/<br>150 | W    | 0<br> <br>10000  | ALL             | 5-6-7           |
| Cn013          | <b>Freque</b><br>Enter th                   | Frequency of resonance Filter (Notch Filter).<br>Enter the vibration frequency in Cn013, to eliminate<br>system mechanical vibration.                                                                                                                                                                                                                                                                                                                                                                                                 |                | Hz   | 0<br> <br>1000   | Pi<br>Pe<br>S   | 5-3-9           |
| Cn014          | Adjustir                                    | Vidth of the Resonance Filter.<br>Ing the band width of the frequency, lower the band<br>alue in Cn014, restrain frequency Band width will<br>er.                                                                                                                                                                                                                                                                                                                                                                                     | 7              | x    | 1<br> <br>100    | Pi<br>Pe<br>S   | 5-3-9           |
| <b>Cn015.0</b> | PI/P co<br>Setting<br>0<br>1<br>2<br>3<br>4 | ntrol switch mode.         Explanation         Switch from PI to P if the torque command is larger than Cn016.         Switch from PI to P if the speed command is larger than Cn017.         Switch from PI to P if the acceleration rate is larger than Cn018.         Switch from PI to P if the position error is larger than Cn018.         Switch from PI to P if the position error is larger than Cn019.         Switch from PI to P be the input contact PCNT.         Set one of the multi function terminals to option 03. | 4              | х    | 0<br> <br>4      | Pi              |                 |
| Cn015.1        | Automa<br>Setting<br>0<br>1<br>2<br>3<br>4  | atic gain 1& 2 switchExplanationSwitch from gain 1 to 2 if torque command is<br>greater than Cn021.Switch from gain 1 to 2 if speed command is<br>greater than Cn022.Switch from gain 1 to 2 if acceleration command<br>is greater than Cn023.Switch from gain 1 to 2 if position error value is<br>greater than Cn024.Switch from gain 1 to 2 if position error value is<br>greater than Cn024.Switch from gain 1 to 2 by input contact G-SEL.Set one of the multi function terminals to option<br>15.                               | 4              | x    | 0<br> <br>4      | Pe<br>S         | 5-3-11          |

| Parameter | Name & Function                                                                                                                                                                                                                                                                                                                                                                                              | Default | Unit        | Setting<br>Range | Control<br>Mode | Chapter |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|------------------|-----------------|---------|
| Cn016     | <b>PI/P control mode switch by Torque Command</b><br>Set the <b>Cn015.0=0</b> first.<br>If Torque Command is less than Cn016 PI control is<br>selected.<br>If Torque Command is greater than Cn016 P control is<br>selected.                                                                                                                                                                                 | 200     | %           | 0<br> <br>399    | Pi<br>Pe<br>S   | 5-3-11  |
| Cn017     | PI/P control mode switch by Speed Command<br>Set the Cn015.0=1 first.<br>If Speed Command is less than Cn017 PI control is<br>selected.<br>If Speed Command is greater than Cn017 P control is<br>selected.                                                                                                                                                                                                  | 0       | rpm         | 0<br> <br>4500   | Pi<br>Pe<br>S   | 5-3-11  |
| Cn018     | PI/P control mode switch by accelerate Command<br>Set the Cn015.0=2 first.<br>If Acceleration is less than Cn018 PI control is<br>selected.<br>If Acceleration is greater than Cn018 P control is<br>selected.                                                                                                                                                                                               | 0       | rps/s       | 0<br> <br>18750  | Pi<br>Pe<br>S   | 5-3-11  |
| Cn019     | PI/P control mode switch by position error number<br>Set the Cn015.0=3 first.<br>If Position error value is less than Cn019 PI control is<br>selected.<br>If Position error value is greater than Cn019 P control is<br>selected.                                                                                                                                                                            | 0       | pulse       | 0<br> <br>50000  | Pi<br>Pe<br>S   | 5-3-11  |
| Cn020     | Automatic gain 1& 2 switch delay time.<br>Speed loop 2 to speed loop 1, Change over delay,<br>when two control speed loops (P&I gains 1 & 2) are<br>used.                                                                                                                                                                                                                                                    | 0       | x02<br>msec | 0<br> <br>10000  | Pi<br>Pe<br>S   | 5-3-11  |
| Cn021     | Automatic gain 1& 2 switch condition (Torque<br>command)<br>Set Cn015.1=0 first.<br>When torque command is less than Cn021, Gain 1 is<br>selected.<br>When torque command is greater than Cn021, Gain 2<br>is selected<br>When Gain 2 is active and torque command becomes<br>less than Cn021 setting value, system will<br>automatically switch back to Gain 1 switch time delay<br>can be set by Cn020.    | 200     | %           | 0<br> <br>399    | Pi<br>Pe<br>S   | 5-3-11  |
| Cn022     | Automatic gain 1& 2 switch condition (Speed<br>Command)<br>Set the Cn015.1=1 first.<br>When speed command is less than Cn022 Gain 1 is<br>selected.<br>When speed command is greater than Cn022 Gain 2<br>is selected.<br>When Gain 2 is active and speed command becomes<br>less than Cn022 setting value, system will<br>automatically switch back to Gain 1 the switch time<br>delay can be set by Cn020. | 0       | rpm         | 0<br> <br>4500   | Pi<br>Pe<br>S   | 5-3-11  |

| Parameter |                                                                                                            | Nan                                                                                                                                                                         | ne & Function                                                                                            |                                                                                                                              | Default | Unit  | Setting<br>Range | Control<br>Mode | Chapter |
|-----------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------|-------|------------------|-----------------|---------|
| Cn023     | (Accele<br>Set Cn<br>When a<br>selected<br>When a<br>selected<br>When a<br>become<br>switch b              | d.<br>ccel. command<br>d.<br>Sain 2 is active<br>es less than Cr<br>back to Gain 1                                                                                          | and)<br>d is less than (<br>d is greater tha<br>and accelerat<br><b>1023</b> system w<br>the switch time | Cn023 Gain 1 is<br>In Cn023 Gain 2 is                                                                                        | U       | rps/s | 0<br> <br>18750  | Pi<br>Pe<br>S   | 5-3-11  |
| Cn024     | error va<br>Set Cn(<br>When p<br>selected<br>When p<br>is select<br>When<br>become<br>switch b<br>set by ( | alue)<br>D15.1=3 first.<br>osition error va<br>d.<br>osition error va<br>ted.<br>Gain 2 is ac<br>es less than C<br>back to Gain 1<br>Cn020.                                 | alue is less than<br>alue is greater t<br>ctive and pos<br><b>cn024</b> system                           | ndition (Position<br>n Cn024 Gain 1 is<br>than Cn024 Gain 2<br>sition error value<br>will automatically<br>time delay can be | 0       | pulse | 0<br> <br>50000  | Pi<br>Pe<br>S   | 5-3-11  |
| Cn025     |                                                                                                            | <b>nertia ratio</b><br>ertiaRatio = $\frac{Loo}{M}$                                                                                                                         | adInertiaToMot                                                                                           | $\frac{or(J_L)}{a(J_M)} \times 100\%$                                                                                        | 40      | x0.1  | 0<br> <br>1000   | Pi<br>Pe<br>S   | 5-5     |
| Cn026     | When A<br>depend<br>applicat                                                                               | y Setting<br>suto tuning is u<br>ing on the var<br>ions such as the<br>Position Loop<br>Gain<br>Pn310 [1/s]<br>15<br>20<br>30<br>40<br>60<br>85<br>120<br>160<br>200<br>250 | ious Gain setti<br>hose listed bele<br>Explanation<br>Speed Loop<br>Gain                                 | ngs for<br>ow:                                                                                                               | 4       | x     | 1<br> <br>A      | Pi<br>Pe<br>S   | 5-5-1   |

| Parameter                       | Name & Function                                                                                                                                                                                                                                                                                                                                                                               | Default | Unit      | Setting<br>Range | Control<br>Mode | Chapter      |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|------------------|-----------------|--------------|
| Cn027                           | Analog monitor output 1, Offset adjustment<br>Analog monitor output zero offset can be adjusted by<br>parameter. Cn027 as below.<br>Before offset Adjust After offset adjust<br>Analog Monitor<br>Output Voltage (V)<br>Offset<br>Time                                                                                                                                                        | 4       | x40<br>mV | -250<br> <br>250 | ALL             | 5-6-9        |
| Cn028                           | Analog monitor output 2, offset adjustment<br>Analog monitor output 2, zero offset can be adjusted by<br>parameter. <b>Cn028.</b> See diagram for Monitor 1 above.                                                                                                                                                                                                                            | 4       | x40<br>mV | -250<br> <br>250 | ALL             | 5-6-9        |
| ★Cn029                          | Reset parameters.         Setting       Explanation         0       Disabled         1       Reset all Parameters to default ( Factory setting)                                                                                                                                                                                                                                               | 0       | x         | 0<br> <br>1      | ALL             | 5-6-10       |
| <b>★Cn030</b><br>H <u>D</u> DDD | Servo motor model code<br>Servo model code can be display and checked with<br>parameter dn-08, refer <b>3-2-2 dn-08</b> table for more<br>information.<br>Attention : Before operate your servo motor., check this<br>parameter setting is compatible for servo drive and<br>motor. If there has any incompatible problem contact<br>supplier for more information.                           | Default | x         | х                | ALL             | 3-2-2        |
| Cn031                           | Cooling fan running modes<br>(Available for TSTA-50 & TSTA-75)         Setting       Explanation         0       Auto-run by internal temperature sensor.         1       Run when Servo ON         2       Always Running.         3       Disabled.                                                                                                                                         | 0       | x         | 0<br> <br>3      | ALL             | 5-6-8        |
| Cn032                           | <b>Speed feed back smoothing filter</b><br>Restrain sharp vibration noise by the setting and this<br>filter also delay the time of servo response.                                                                                                                                                                                                                                            | 500     | Hz        | 1<br> <br>1000   | Pe<br>Pi<br>S   | 5-3-12       |
| Cn033                           | Speed Feed-forward smoothing filter<br>Smooth the speed feed-forward command.                                                                                                                                                                                                                                                                                                                 | 40      | Hz        | 1<br> <br>100    | Pe<br>Pi        | 5-4-6        |
| Cn034                           | <b>Torque command smoothing filter</b><br>Restrain sharp vibration noise by the setting and this filter delay the time of servo response.                                                                                                                                                                                                                                                     | 0       | Hz        | 0<br> <br>1000   | ALL             | 5-2-7        |
| Cn035                           | Panel display content selectionSelect display content for LED panel for power on status.Select display content for LED panel for power on status.SettingExplanation0Display data set and drive status parameter. Refer<br>3-11Display Un-01 ~ Un-19 content. Refer 3-2-1 for<br>more information.1Ex : Set Cn035=1, when power on it display the<br>actual speed of motor. (content of Un-01) | 0       | x         | 0<br> <br>19     | ALL             | 3-1<br>3-2-1 |

| Parameter      | Name & Function                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default | Unit        | Setting<br>Range | Control<br>Mode | Chapter |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|------------------|-----------------|---------|
| Cn036          | Servo ID number<br>When using Modbus for communication,each servo<br>units has to setting a ID number. repeated ID number<br>will lead to communication fail.                                                                                                                                                                                                                                                                                                        | 1       | x           | 0<br> <br>254    | ALL             | 7       |
| <b>Cn037.0</b> | Modbus RS-485 braud rate setting           Setting         Explanation           0         4800           1         9600           2         19200           3         38400           4         57600           5         115200                                                                                                                                                                                                                                    | 1       | bps         | 0<br> <br>5      | ALL             | 7       |
| <b>Cn037.1</b> | PC Software RS-232 braud rate setting           Setting         Explanation           0         4800           1         9600           2         19200           3         38400                                                                                                                                                                                                                                                                                    | 1       | bps         | 0<br> <br>3      | ALL             | 7       |
| Cn038          | Communication protocol           Setting         Explanation           0         7, N, 2 (Modbus, ASCII)           1         7, E, 1 (Modbus, ASCII)           2         7, O, 1 (Modbus, ASCII)           3         8, N, 2 (Modbus, ASCII)           4         8, E, 1 (Modbus, ASCII)           5         8, O, 1 (Modbus, ASCII)           6         8, N, 2 (Modbus, ASCII)           7         8, E, 1 (Modbus, RTU)           8         8, O, 1 (Modbus, RTU) | 0       | х           | 0<br> <br>8      | ALL             | 7       |
| Cn039          | <b>Communication time-out dection</b><br>Setting non-zero value to enable this function,<br>communication Time should be in the setting period<br>otherwise alarm message of communication time-out<br>will show. Setting a zero value to disable this function.                                                                                                                                                                                                     | 0       | sec         | 0<br> <br>20     | ALL             | 7       |
| Cn040          | Communication response delay time<br>Delay Servo response time to master control unit.                                                                                                                                                                                                                                                                                                                                                                               | 0       | 0.5<br>msec | 0<br> <br>255    | ALL             | 7       |

# **Torque-Control Parameter**

| Parameter      | Name & Function                                                                                                                                                                                                                                  | Default  | Unit     | Setting<br>Range | Control<br>Mode | Chapter |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------|-----------------|---------|
| ★Tn101         | Linear acceleration/deceleration methodSettingExplanation0Disabled.1Enabled.                                                                                                                                                                     | 0        | x        | 0<br> <br>1      | т               | 5-2-3   |
| <b>★</b> Tn102 | Linear accel/decel time period.<br>Time taken for the torque-command to linearly<br>accelerate to the rated torque level or Decelerate to<br>zero torque .<br>Torque Command<br>Ratio Torque<br>Command<br>Current Torque<br>Command<br>Time(ms) | 1        | msec     | 1<br> <br>50000  | т               | 5-2-3   |
| Tn103          | Analog Torque Command Ratio<br>Slope of voltage command / Torque command can be<br>adjusted.<br>Torque<br>Command (%) 200<br>100<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-                                                                  | e<br>300 | %<br>10V | 0<br> <br>300    | т               | 5-2-1   |

| Parameter | Name & Function                                                                                                                                                                                                                                                                                                                                      | Default | Unit | Setting<br>Range     | Control<br>Mode | Chapter |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|----------------------|-----------------|---------|
| Tn104     | Torque Command, analog input voltage offset<br>The offset amount can be adjusted by this parameter.<br>Before Offset<br>Adjustment Input Voltage (V)<br>Unput Voltage (V)<br>Torque<br>Command (%)<br>Torque (%)<br>Torque (%)                                                                                                                       | 0       | mV   | -10000<br> <br>10000 | т               | 5-2-2   |
| Tn105     | Preset Speed Limit 1. ( Torque control mode)         In Torque control, input contacts SPD1 and SPD2 can be used to select Preset speed limit 1. As follows:         Input Contact SPD2       Input Contact SPD1         0       1         Note: Input contacts status "1" (ON) and "0" (OFF). Refer to 5-6-1 to set high or low input logic levels. | 100     | rpm  | 0<br> <br>3000       | т               | 5-2-6   |
| Tn106     | In Torque control, input contacts SPD1 and SPD2 can be used to select Preset speed limit 2. As follows:         Input Contact SPD2       Input Contact SPD1         1       0         Note: Input contacts status "1" (ON) and "0" (OFF)         Refer to 5-6-1 to set high or low input logic levels.                                               | 200     | rpm  | 0<br> <br>3000       | т               | 5-2-6   |
| Tn107     | Preset Speed Limit 3. ( Torque control mode)<br>In Torque control, input contacts SPD1 and SPD2 can<br>be used to select Preset speed limit 3. As follows:-<br>Input Contact SPD2 Input Contact SPD1<br>1 1<br>Note: Input contacts status "1" (ON) and "0" (OFF)<br>Refer to 5-6-1 to set high or low input logic levels.                           | 300     | rpm  | 0<br> <br>3000       | т               | 5-2-6   |
| Tn108     | <b>Torque output monitor value</b><br>When the torque level in CW or CCW direction<br>become greater then this value setting, the output<br>contact INT operate.                                                                                                                                                                                     | 0       | %    | 0<br> <br>300        | ALL             | 5-2-7   |



## Speed-Control Parameter

| Parameter | Name & Function                                                                                                                                                                                                                                                                                                                                                   | Default | Unit | Setting<br>Range   | Control<br>Mode | Chapter |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|--------------------|-----------------|---------|
| Sn201     | Internal Speed Command 1<br>In Speed control, input contacts SPD1 and SPD2 can<br>be used to select 3 sets of internal speed command,<br>select for speed command 1 contact status shows<br>below:<br>Input Contact SPD2 Input Contact SPD1<br>0 1<br>Note: Input contacts status "1" (ON) and "0" (OFF)<br>Refer to 5-6-1 to set high or low input logic levels. | 100     | rpm  | -3000<br> <br>3000 | S               | 5-3-1   |
| Sn202     | Internal Speed Command 2<br>In Speed control, input contacts SPD1 and SPD2 can<br>be used to select 3 sets of internal speed command,<br>select for speed command 2 contact status shows<br>below:<br>Input Contact SPD2 Input Contact SPD1<br>1 0<br>Note: Input contacts status "1" (ON) and "0" (OFF)<br>Refer to 5-6-1 to set high or low input logic levels. | 200     | rpm  | -3000<br> <br>3000 | S               | 5-3-1   |
| Sn203     | Internal Speed Command 3<br>In Speed control, input contacts SPD1 and SPD2 can<br>be used to select 3 sets of internal speed command,<br>select for speed command 3 contact status shows<br>below:<br>Input Contact SPD2 Input Contact SPD1<br>1 1<br>Note: Input contacts status "1" (ON) and "0" (OFF)<br>Refer to 5-6-1 to set high or low input logic levels. | 300     | rpm  | -3000<br> <br>3000 | S               | 5-3-1   |
| Sn204     | Zero Speed selection Enable or Disable the zero           speed preset parameter Sn215.           Setting         Explanation           0         No Action. (Sn215 zero preset is no effective).           1         Set the preset value in Sn215 as zero speed                                                                                                 | t O     | x    | 0<br> <br>1        | S               | 5-3-12  |
| Sn205     | Speed command accel/decel smooth method.         Setting       Explanation         0       By Step response         1       Smooth Acceleration/deceleration according to the curve defined by Sn206.         2       Linear accel/decel time constant .Defined by Sn207         3       S curve for Acceleration/deceleration. Defined by Sn208.                 | 0       | x    | 0<br> <br>3        | S               | 5-3-6   |

| Parameter | Name & Function                                                                                                                                                                                                                                                                           | Default | Unit | Setting<br>Range | Control<br>Mode | Chapter |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------------------|-----------------|---------|
| Sn206     | Speed command smooth accel/decel tim<br>Constant.<br>Set Sn205=1 to enable this function then set the time<br>period for the speed to rise to 63.2% of the full speed<br>Speed Command (%)                                                                                                | e       | msec | 1<br> <br>10000  | S               | 5-3-6   |
| Sn207     | Speed command linear accel/decel time constant<br>Set Sn205=2 to enable this function then set the time<br>period for the speed to rise linearly to full speed.<br>Speed Command (%)<br>100<br>50<br>50<br>Speed Command<br>50<br>Speed Command<br>50<br>Speed Command<br>50<br>Time (ms) |         | msec | 1<br> <br>50000  | S               | 5-3-6   |

| Parameter | Name & Function                                                                                                                                                                                                                                                                                                                                                                                                                    | Default | Unit       | Setting<br>Range | Control<br>Mode | Chapter      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|------------------|-----------------|--------------|
| Sn208     | S curve speed command acceleration and deceleration time setting.<br>Set Sn205=3 to enable this function.<br>In the period of Acc/Dec , drastic speed changing might cause vibration of machine. S curve speed command acc/dec time setting has the effect to smooth acc/dec curve.<br>Speed Command (rpm)<br>ts=Sn208<br>ta=Sn209<br>td=Sn210<br>td=Sn210<br>Rule for the setting : $\frac{t_a}{2} > t_s$ , $\frac{t_d}{2} > t_s$ | 1       | msec       | 1<br> <br>1000   | S               | 5-3-6        |
| Sn209     | S curve speed command acceleration time setting.<br>Refer Sn208                                                                                                                                                                                                                                                                                                                                                                    | 200     | msec       | 0<br> <br>5000   | S               | 5-3-6        |
| Sn210     | S curve speed command deceleration time setting.<br>Refer Sn208                                                                                                                                                                                                                                                                                                                                                                    | 200     | msec       | 0<br> <br>5000   | s               | 5-3-6        |
| Sn211     | Speed loop Gain 1<br>Speed loop gain has a direct effect on the frequency<br>response bandwidth of the Speed-control loop.<br>Without causing vibration or noise Speed-loop-gain<br>can be increased to obtain a faster speed response.<br>If Cn025 (load Inertia ratio) is set correctly, the<br>speed-loop-bandwidth will equal to speed-loop-gain.                                                                              | 40      | Hz         | 10<br> <br>450   | Pi<br>Pe<br>S   | 5-3-8<br>5-5 |
| Sn212     | <b>Speed-loop Integral time 1</b><br>Speed loop integral element can eliminate the steady<br>speed error<br>and react to even slight speed variations.<br>Decreasing Integral time can improve system rigidity.<br>The formula below shows the relationship between<br>Integral time and Speed loop Gain.<br>SpeedLoopIntegrationTimeCons tan $t \ge 5 \times \frac{1}{2\pi \times SpeedLoopGe}$                                   | 100     | x0.2<br>ms | 1<br> <br>500    | Pi<br>Pe<br>S   | 5-3-8<br>5-5 |

| Parameter | Name & Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Defaul<br>t           | Unit         | Settin<br>g<br>Range | Control<br>Mode | Chapter      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|----------------------|-----------------|--------------|
| Sn213     | Speed loop Gain 2<br>Refer to Sn211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                    | Hz           | 10<br> <br>450       | Pi<br>Pe<br>S   | 5-3-8<br>5-5 |
| Sn214     | Speed loop Integral time 2<br>Refer to Sn212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                   | x0.2<br>msec | 1<br> <br>500        | Pi<br>Pe<br>S   | 5-3-8<br>5-5 |
| Sn215     | Value of zero speed<br>Set the zero speed range in Sn215<br>When the actual speed is lower than <b>Sn215</b> value, Output<br>contact <b>ZS</b> is activated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                    | rpm          | 0<br> <br>4500       | s               | 5-3-12       |
| Sn216     | Analog Speed Command Ratio<br>Slope of voltage command / Speed command can be<br>adjusted.<br>Speed Command<br>(rpm) 3000<br>-10 -5<br>-10 -5<br>-1500 Input<br>Voltage (V)<br>-3000 -4500 Slope set by<br>-4500 Sn216 | Rate                  | rpm<br>/10V  | 100<br> <br>4500     | S               | 5-3-2        |
| Sn217     | Analog Speed Command offset adjust<br>The offset amount can be adjusted by this parameter.<br>Before Offset Adjustment<br>Input Voltage (V)<br>Offset<br>Voltage<br>Speed<br>Command (rpm)<br>Speed<br>Command (rpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                     | mV           | -10000<br> <br>10000 | S               | 5-3-3        |
| Sn218     | Analog speed command limited<br>Setting Sn218 for limit the highest speed command of<br>analog input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rate<br>rpm x<br>1.02 | rpm          | 100<br> <br>4500     | S               | 5-3-4        |



## **Position Control Parameter**

| Parameter       | Name & Function                                                                                                                                                                                                                                                                                                                                                                          | Default | Unit | Setting<br>Range | Control<br>Mode | Chapter |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------------------|-----------------|---------|
| ★Pn301.0        | 1     (CCW)/(CW) Pulse       2     AB-Phase pulse x 2       3     AB-Phase pulse x 4                                                                                                                                                                                                                                                                                                     | 0       | х    | 0<br> <br>3      | Ре              | 5-4-1   |
| <b>★Pn301.1</b> | Position- Pulse Command Logic         Setting       Explanation         0       Positive Logic         1       Negative Logic                                                                                                                                                                                                                                                            | 0       | x    | 0<br> <br>1      |                 |         |
| ★Pn301.2        | Selection for command receive of drive inhibit mode         Setting Explanation         0       When drive inhibit occurs, record value of position command input coherently.         1       When drive inhibit occurs, ignore the value of position command.                                                                                                                           | 0       | x    | 0<br> <br>1      | Pi<br>Pe        | 5-4-1   |
| Pn302           | Electronic Gear Ratio Numerator 1<br>Use input contacts GN1 & GN2 to select one of four<br>electronic Gear Ratio Numerators.<br>To select Numerator 1, the statue of the input-contacts<br>GN1 & GN2 should be as follows:<br>Input Contact GN2 Input Contact GN1<br>0 0<br>Note: Input contacts status "1" (ON) and "0" (OFF).<br>Refer to 5-6-1 to set high or low input logic levels. | 1       | x    | 1<br> <br>50000  | Pi<br>Pe        | 5-4-3   |
| Pn303           | Electronic Gear Ratio Numerator 2<br>Use input contacts GN1 & GN2 to select one of four<br>electronic Gear Ratio Numerators.<br>To select Numerator 2, the statue of the input-contacts<br>GN1 & GN2 should be as follows:<br>Input Contact GN2 Input Contact GN1<br>0 1<br>Note: Input contacts status "1" (ON) and "0" (OFF).<br>Refer to 5-6-1 to set high or low input logic levels. | 1       | x    | 1<br> <br>50000  | Pi<br>Pe        | 5-4-3   |
| Pn304           | Electronic Gear Ratio Numerator 3<br>Use input contacts GN1 & GN2 to select one of four<br>electronic Gear Ratio Numerators.<br>To select Numerator 3, the statue of the input-contacts<br>GN1 & GN2 should be as follows:<br>Input Contact GN2 Input Contact GN1<br>1 0<br>Note: Input contacts status "1" (ON) and "0" (OFF).<br>Refer to 5-6-1 to set high or low input logic levels. | 1       | x    | 1<br> <br>50000  | Pi<br>Pe        | 5-4-3   |



| Parameter | Name & Function                                                                                                                                                                                                                                                                                                                                                                                                                  | Default | Unit  | Setting<br>Range | Control<br>Mode | Chapter      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|------------------|-----------------|--------------|
| Pn305     | Electronic Gear Ratio Numerator 4 Use input contacts GN1 & GN2 to select one of four electronic Gear Ratio Numerators. To select Numerator 4, the statue of the input-contacts GN1 & GN2 should be as follows:           Input Contact GN2         Input Contact GN1           1         1           Note:         Input contacts status "1" (ON) and "0" (OFF).           Refer to 5-6-1 to set high or low input logic levels. | 1       | x     | 1<br> <br>50000  | Pi<br>Pe        | 5-4-3        |
| ★Pn306    | Electronic Gear Ratio Denominator<br>Set the calculated Electronic Gear Ratio Denominator<br>in Pn 306. (Refer to section 5-4-3).<br>Final Electronic Gear Ratio should comply with the<br>formula below.<br>$\frac{1}{200} \le ElectronicGearRatio \le 200$                                                                                                                                                                     | 1       | x     | 1<br> <br>50000  | Pi<br>Pe        | 5-4-3        |
| Pn307     | Position complete value<br>Set a value for In position output signal.<br>When the Position pulse error value is less then Pn307<br>output-contact INP (In position output signal) will be<br>activated.                                                                                                                                                                                                                          | 10      | pulse | 0<br> <br>50000  | Pi<br>Pe        | 5-4-9        |
| Pn308     | "Incorrect position" Error band Upper limit.<br>When the Position error value is higher then number of<br>pulses set in Pn308, an Alarm message<br>AL-11(Position error value alarm) will be displayed.                                                                                                                                                                                                                          | 50000   | pulse | 0<br> <br>50000  | Pi<br>Pe        | 5-4-9        |
| Pn309     | Incorrect position" Error band lower limit.<br>When the Position error value is lower then number of<br>pulses set in <b>Pn309</b> , an Alarm message<br><b>AL-11</b> (Position error value alarm) will be displayed.                                                                                                                                                                                                            | 50000   | pulse | 0<br> <br>50000  | Pi<br>Pe        | 5-4-9        |
| Pn310     | <b>Position Loop Gain 1</b><br>Without causing vibration or noise on the mechanical system the position loop gain value can be increased to speed up response and shorten the positioning time. Generally, the position loop bandwidth should not be higher then speed loop bandwidth. The relationship is according to the formula below:<br>PositionLoopGain $\leq 2\pi \times \frac{SpeedLoopGain}{5}$                        | 40      | 1/s   | 1<br> <br>450    | Pi<br>Pe        | 5-4-6<br>5-5 |
| Pn311     | Position Loop Gain 2<br>Refer to Pn310                                                                                                                                                                                                                                                                                                                                                                                           | 40      | 1/s   | 1<br> <br>450    | Pi<br>Pe        | 5-4-6<br>5-5 |
| Pn312     | Position Loop Feed Forward Gain<br>It can be used to reduce the track error of position<br>control and speed up the response.<br>If the feed forward gain is too large, it might cause<br>speed<br>Overshoot and in position oscillations which result in<br>the repeated ON/OFF operation of the output contact<br>INP("In Position"output signal).                                                                             | 0       | %     | 0<br> <br>100    | Pi<br>Pe        | 5-4-6<br>5-5 |

| Parameter | Name & Function                                                                                                                                                                                                                             | Default | Unit | Setting<br>Range | Control<br>Mode | Chapter |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------------------|-----------------|---------|
| ★Pn313    | Position command smooth<br>Acceleration/Deceleration Time Constant<br>Set the time period for the Position command pulse<br>frequency to rise from 0 to 63.2%.<br>Position Pulse Command Frequency (%)                                      | 10      | msec | Q                | Pi<br>Pe        | 5-4-4   |
| ★Pn314    | Positioning Command Direction Definition                                                                                                                                                                                                    | 1       | x    | 0<br> <br>1      | Pi<br>Pe        | 5-4-5   |
|           | 0 (CW) .Clockwise<br>1 (CCW). Counter Clockwise                                                                                                                                                                                             | _       |      |                  |                 |         |
|           | Pulse Error Clear Modes.                                                                                                                                                                                                                    |         |      |                  |                 |         |
|           | SettingExplanation0Once CLR signal is activated, it eliminates,<br>the Pulse error amount.                                                                                                                                                  |         |      |                  | Pe              |         |
| Pn315     | <ul> <li>Once CLR signal is activated, following take place:</li> <li>The position command is cancelled.</li> <li>Motor rotation is interrupted</li> <li>Pulse error amount is cleared.</li> <li>Machine home reference is reset</li> </ul> | s<br>0  | x    | 0<br> <br>2      | Pi<br>Pe        | 5-4-7   |
|           | <ul> <li>Once CLR signal is activated, following take place:-</li> <li>The position command is cancelled</li> <li>Motor rotation is interrupted Pulse error amount is cleared.</li> </ul>                                                   | S       |      |                  | Pi              |         |

| Parameter | Name & Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default | Unit  | Setting<br>Range     | Control<br>Mode | Chapter |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|----------------------|-----------------|---------|
| ★Pn316    | Internal Position Command Mode           Setting         Explanation           0         Absolute Position           1         Incremental Position                                                                                                                                                                                                                                                                                                                                                           | 0       | х     | 0<br> <br>1          | Pi              | 5-4-2   |
| ★Pn316.1  | Internal         Position         Command         Hold         (PHOLD)           program         select         Setting         Explanation           Setting         Explanation         When PHOLD is active then received PTRG         signal. servomotor will be proceed internal posistion command from PHOLD position.           When PHOLD is active then received PTRG         When PHOLD is active then received PTRG signal. Servomotor will operate interal position command of current selection. | 0       | ×     | 0<br> <br>1          | Pi              | 5-4-2   |
| Pn317     | Internal Position Command 1 – Rotation Number<br>Set the Rotation number of the internal Position<br>Command 1<br>Use input contacts POS1~POS4 to select Refer to<br>5-4-2.                                                                                                                                                                                                                                                                                                                                   | 0       | rev   | -30000<br> <br>30000 | Pi              | 5-4-2   |
| Pn318     | Internal Position Command 1 - Pulse Number<br>Set the rotation pulse number of internal position<br>Command 1<br>Internal Position Command 1 =Pn317(Rotation Number)<br>x<br>Pulse number of One Rotate x 4 + Pn318(Pulse number)                                                                                                                                                                                                                                                                             | 0       | pulse | -32767<br> <br>32767 | Pi              | 5-4-2   |
| Pn319     | Internal Position Command 1 - Move Speed<br>Setting the Move Speed of internal Position Command<br>1                                                                                                                                                                                                                                                                                                                                                                                                          | 0       | rpm   | 0<br> <br>3000       | Pi              | 5-4-2   |
| Pn320     | Internal Position Command 2-Rotation Number Please refer to Pn317                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | rev   | -30000<br> <br>30000 | Pi              | 5-4-2   |
| Pn321     | Internal Position Command 2-Pulse Number<br>Please refer to Pn318                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | pulse | -32767<br> <br>32767 | Pi              | 5-4-2   |
| Pn322     | Internal Position Command 2-Move Speed Please refer to Pn319                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0       | rpm   | 0<br> <br>3000       | Pi              | 5-4-2   |
| Pn323     | Internal Position Command 3-Rotation Number<br>Please refer to Pn317                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       | rev   | -30000<br> <br>30000 | Pi              | 5-4-2   |
| Pn324     | Internal Position Command 3-Pulse Number<br>Please refer to Pn318                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | pulse | -32767<br> <br>32767 | Pi              | 5-4-2   |
| Pn325     | Internal Position Command 3-Move Speed Please refer to Pn319                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0       | rpm   | 0<br> <br>3000       | Pi              | 5-4-2   |
| Pn326     | Internal Position Command 4 -Rotation Number<br>Please refer to Pn317                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0       | rev   | -30000<br> <br>30000 | Pi              | 5-4-2   |
| Pn327     | Internal Position Command 4-Pulse Number<br>Please refer to Pn318                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | pulse | -32767               | Pi              | 5-4-2   |
| Pn328     | Internal Position Command 4-Move Speed Please refer to Pn319                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0       | rpm   | 0<br> <br>3000       | Pi              | 5-4-2   |

| Parameter    | Name & Function                                                                              | Default  | Unit      | Settin<br>g<br>Range | Control<br>Mode | Chapter       |
|--------------|----------------------------------------------------------------------------------------------|----------|-----------|----------------------|-----------------|---------------|
|              | Internal Position Command 5 -Rotation Number                                                 |          |           | -30000               |                 |               |
| Pn329        | Please refer to <b>Pn317</b>                                                                 | 0        | rev       | 30000                | Pi              | 5-4-2         |
|              | Internal Position Command 5-Pulse Number                                                     |          |           | -32767               |                 |               |
| Pn330        | Please refer to <b>Pn318</b>                                                                 | 0        | pulse     | <br>32767            | Pi              | 5-4-2         |
| _            | Internal Position Command 5-Move Speed                                                       |          |           | 0                    |                 |               |
| Pn331        | Please refer to <b>Pn319</b>                                                                 | 0        | rpm       | <br>3000             | Pi              | 5-4-2         |
|              | Internal Position Command 6 -Rotation Number                                                 |          |           | -30000               |                 |               |
| Pn332        | Please refer to <b>Pn317</b>                                                                 | 0        | rev       | 30000                | Pi              | 5-4-2         |
| -            | Internal Position Command 6-Pulse Number                                                     |          |           | -32767               | <u> </u>        |               |
| Pn333        | Please refer to Pn318                                                                        | 0        | pulse     | <br>32767            | Pi              | 5-4-2         |
|              | Internal Position Command 6-Move Speed                                                       | 0        | rpm       | 0                    |                 |               |
| Pn334        | Please refer to <b>Pn319</b>                                                                 | <br>3000 | Pi        | 5-4-2                |                 |               |
|              | Internal Position Command 7 -Rotation Number                                                 |          |           | -30000               | í               |               |
| Pn335        | Please refer to <b>Pn317</b> 0 rev                                                           |          | <br>30000 | Pi                   | 5-4-2           |               |
| <b>Dn226</b> | Internal Position Command 7-Pulse Number         0           Please refer to Pn318         0 |          | nulaa     | -32767               | Pi              | 540           |
| Pn336        |                                                                                              |          | pulse     | <br>32767            | PI              | 5-4-2         |
| D:::007      | Internal Position Command 7-Move Speed                                                       |          |           | 0                    | Di              | 540           |
| Pn337        | Please refer to <b>Pn319</b>                                                                 | 0        | rpm       | <br>3000             | Pi              | 5-4-2         |
| D:::000      | Internal Position Command 8 -Rotation Number                                                 |          |           | -30000               | Di              | 540           |
| Pn338        | Please refer to <b>Pn317</b>                                                                 | 0        | rev       | <br>30000            | Pi              | 5-4-2         |
| Pn339        | Internal Position Command 8-Pulse Number                                                     | 0        |           | -32767               | Pi              | 5-4-2         |
| P11339       | Please refer to <b>Pn318</b>                                                                 | 0        | pulse     | ا<br>32767           |                 | <u>0-4-</u> 2 |
| Pn340        | Internal Position Command 8-Move Speed                                                       | 0        | rpm       | 0                    | Pi              | 5-4-2         |
| 111340       | Please refer to <b>Pn319</b>                                                                 | 0        | ipin      | 3000                 |                 | 5-4-2         |
| Pn341        | Internal Position Command 9 -Rotation Number                                                 | 0        | rev       | -30000<br>I          | Pi              | 5-4-2         |
| 1 110 11     | Please refer to Pn317                                                                        |          | 100       | 30000                |                 | 0 4 2         |
| Pn342        | Internal Position Command 9-Pulse Number                                                     | 0        | pulse     | -32767               | Pi              | 5-4-2         |
| -            | Please refer to Pn318                                                                        |          |           | 32767                |                 |               |
| Pn343        | Internal Position Command 9-Move Speed Please refer to Pn319                                 | 0        | rpm       | 0                    | Pi              | 5-4-2         |
|              | Internal Position Command 10 -Rotation Number                                                |          |           | 3000<br>-30000       |                 |               |
| Pn344        | Please refer to Pn317                                                                        | 0        | rev       |                      | Pi              | 5-4-2         |
|              | Internal Position Command 10-Pulse Number                                                    |          |           | 30000<br>-32767      |                 |               |
| Pn345        | Please refer to <b>Pn318</b>                                                                 | 0        | pulse     |                      | Pi              | 5-4-2         |

| Parameter    | Name & Function                               | Default | Unit   | Setting<br>Range | Control<br>Mode | Chapter       |
|--------------|-----------------------------------------------|---------|--------|------------------|-----------------|---------------|
| D-040        | Internal Position Command 10-Move Speed       |         |        | 0                | Di              | 540           |
| Pn346        | Please refer to <b>Pn319</b>                  | 0       | rpm    | ا<br>3000        | Pi              | 5-4-2         |
| <b>D</b> 0/7 | Internal Position Command 11 -Rotation Number | _       |        | -30000           | <b>D</b> .      |               |
| Pn347        | Please refer to <b>Pn317</b>                  | 0       | rev    | 30000            | Pi              | 5-4-2         |
| D=240        | Internal Position Command 11-Pulse Number     | 0       | nulaa  | -32767           | Pi              | 540           |
| Pn348        | Please refer to Pn318                         | 0       | pulse  | <br>32767        | PI              | 5-4-2         |
| <b>D</b> 040 | Internal Position Command 11-Move Speed       | _       |        | 0                | D:              | 540           |
| Pn349        | Please refer to Pn319                         | 0       | rpm    | <br>3000         | Pi              | 5-4-2         |
|              | Internal Position Command 12-Rotation Number  |         |        | -30000           |                 |               |
| Pn350        | Please refer to <b>Pn317</b>                  | 0       | rev    | <br>30000        | Pi              | 5-4-2         |
| Dm254        | Internal Position Command 12-Pulse Number     | 0       |        | -32767           | Di              | E 4 0         |
| Pn351        | Please refer to <b>Pn318</b>                  | 0       | pulse  | <br>32767        | Pi              | 5-4-2         |
| D:::050      | Internal Position Command 12-Move Speed       |         |        | 0                | Di              | 540           |
| Pn352        | Please refer to <b>Pn319</b>                  | 0       | rpm    | ا<br>3000        | Pi              | 5-4-2         |
| Pn353        | rnal Position Command 13 -Rotation Number     |         | -30000 | Pi               | 5-4-2           |               |
| Ph353        | Please refer to <b>Pn317</b>                  | 0       | rev    | 30000            | PI              | 5-4-2         |
| Pn354        | Internal Position Command 13-Pulse Number     | 0       | pulse  | -32767<br>I      | Pi              | 5-4-2         |
| F11554       | Please refer to <b>Pn318</b>                  | 0       | puise  | ا<br>32767       |                 | 5-4-2         |
| Pn355        | Internal Position Command 13-Move Speed       | 0       | rom    | 0                | Pi              | 5-4-2         |
| F11555       | Please refer to <b>Pn319</b>                  | 0       | rpm    | 3000             | Г               | 5-4-2         |
| Pn356        | Internal Position Command 14 -Rotation Number | 0       | 101    | -30000           | Pi              | 5-4-2         |
| F11350       | Please refer to <b>Pn317</b>                  | 0       | rev    | 30000            |                 | 5-4-2         |
| Pn357        | Internal Position Command 14-Pulse Number     | 0       | pulse  | -32767<br>I      | Pi              | 5-4-2         |
| 1 11007      | Please refer to Pn318                         | Ũ       | puloe  | 32767            | • •             | 042           |
| Pn358        | Internal Position Command 14-Move Speed       | 0       | rpm    | 0                | Pi              | 5-4-2         |
| 1 11550      | Please refer to <b>Pn319</b>                  | 0       | ipin   | 3000             |                 | 5-4-2         |
| Pn359        | Internal Position Command 15 -Rotation Number | 0       | rev    | -30000<br>       | Pi              | 5-4-2         |
| 1 11000      | Please refer to <b>Pn317</b>                  | Ŭ       |        | 30000            |                 | 0 -1-2        |
| Pn360        | Internal Position Command 15-Pulse Number     | 0       | pulse  | -32767<br>I      | Pi              | 5-4-2         |
| 1 11300      | Please refer to <b>Pn318</b>                  |         | Puise  | 32767            |                 | 0-4-2         |
| Pn361        | Internal Position Command 15-Move Speed       | 0       | rom    | 0                | Pi              | 5-4-2         |
| F11301       | Please refer to <b>Pn319</b>                  | 0       | rpm    | 3000             |                 | <u>0-4-</u> 2 |
| Pn362        | Internal Position Command 16 -Rotation Number | 0       |        | -30000           | Pi              | 5-4-2         |
| F11302       | Please refer to <b>Pn317</b>                  | U       | rev    | <br>30000        |                 | 5-4-2         |



| Parameter | Name & Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default | Unit  | Setting<br>Range | Control<br>Mode | Chapter |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|------------------|-----------------|---------|
|           | Internal Position Command 16-Pulse Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |       | -32767           |                 |         |
| Pn363     | Please refer to <b>Pn318</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       | pulse | <br>32767        | Pi              | 5-4-2   |
| _         | Internal Position Command 16-Move Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       | Ŏ                |                 |         |
| Pn364     | Please refer to <b>Pn319</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       | rpm   | 3000             | Pi              | 5-4-2   |
|           | Setting for HOME routine. Setting Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -       |       |                  |                 |         |
|           | Once the home routine is activated, motor will<br>for Home Position switch in 1 <sup>st</sup> speed in CCW<br>direction.<br>Input contacts CCWL or CWL can be used a<br>Home Reference Switch.<br>Once Home reference switch is detected, the<br>Contacts CCWL and CWL will act as normal<br>limits again.<br>Note:<br>When using this function, Pn365.1 can not be<br>or 2. Cn002.1 ( selection for CCWL and CW<br>be set to set to 0.<br>Once the home routine is activated, motor wil<br>search for Home<br>Position switch in 1 <sup>st</sup> speed in CW direction.<br>Input contacts CCWL or CWL can be used as | s<br>v  |       |                  |                 |         |
| Pn365.0   | <ul> <li>the Home Reference Switch.</li> <li>Once Home position is detected, then input</li> <li>contacts CCWL and CWL will act as normal max. limits again.</li> <li>Note:</li> <li>When using this function, Pn365.1 can not be set to 1 or 2.</li> <li>Cn002.1 ( selection for CCWL and CWL must be set to 0.</li> </ul>                                                                                                                                                                                                                                                                                           |         | x     | 0<br> <br>5      | Pi<br>Pe        | 5-4-8   |
|           | <ul> <li>Once the home routine is activated , motor will search for Home position switch in 1<sup>st</sup> speed in CCW direction and sets the Home reference position as soon as the input contact ORG is activated. If Pn365.1=2, it will directly find the closest Rising-Edge of ORG to be the Home position (without a need for Home Reference), then it stops in accordance with Pn365.3 setting.</li> </ul>                                                                                                                                                                                                    | t       |       |                  |                 |         |
|           | Once the home routine is activated , motor wi<br>search for Home<br>Position switch in 1 <sup>st</sup> speed in <b>CW direction</b><br>and sets the reference Home position as soor<br>as the input contact <b>ORG is activated.</b><br>If <b>Pn365.1=2</b> , it will directly find the closest<br>rising -Edge of <b>ORG</b> to be the Home position<br>(without a need for Home reference),<br>then it stops in accordance with <b>Pn365.3</b><br>setting.                                                                                                                                                          | n       |       |                  |                 |         |

| Parameter |         | Name & Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default | Unit | Setting<br>Range | Control<br>Mode | Chapter |
|-----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------------------|-----------------|---------|
| Pn365.0   | 4       | Once the home routine is activated , motor will<br>search for Home<br>position in 1 <sup>st</sup> speed in <b>CCW direction</b> and<br>sets the Home reference position as soon as<br>the nearest Z (marker pulse) is detected.<br>When using this function, set <b>Pn365.1=2</b> .<br>After setting the <b>Z</b> Phase to be the Home, it<br>stops in accordance with the setting of<br><b>Pn365.3.</b>                                                                                             |         | x    | 0                | Pi              | 5-4-8   |
| HODOD     | 5       | Once the home routine is activated , motor will<br>search for Home position in 1 <sup>st</sup> speed in <b>CW</b><br><b>direction</b> and sets the Home reference<br>position as soon as the nearest Z (marker<br>pulse) is detected.<br>When using this function, set <b>Pn365.1=2</b> .<br>After setting the <b>Z</b> Phase to be the Home, it<br>stops in accordance with the setting of<br><b>Pn365.3.</b>                                                                                       | 0       | ~    | - 5              | Pe              | 0-4-0   |
|           |         | ference Home switch or Signal, is found it                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |                  |                 |         |
|           | Setting | search method for the Home position.<br>Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |      |                  |                 |         |
| Pn365.1   | 0       | Once the Home Reference switch or signal is<br>detected, motor <b>reverses direction</b> in 2 <sup>nd</sup><br>speed to find the nearest <b>Z</b> . Phase pulse and<br>sets this as the Home position,<br>then stops in accordance with <b>Pn365.3</b><br>setting method.<br>Once the Home Reference switch or signal is<br>detected, motor <b>Continues in its direction</b> in<br>2 <sup>nd</sup> speed to find the nearest <b>Z</b> Phase pulse<br>and sets this as the Home position, then stops | 0       | x    | 0<br> <br>2      |                 |         |
|           | 2       | in accordance with <b>Pn365.3</b> setting method.<br>When <b>Pn365.0=2</b> or <b>3</b> , it finds the rising edge<br>of ORG to be the Home position, then stops in<br>accordance with <b>Pn365.3</b> .<br>When <b>Pn365.0=4</b> or <b>5</b> , it finds <b>Z</b> Phase pulse<br>to be the Home, then stops in accordance<br>with <b>Pn365.3</b> .                                                                                                                                                     |         |      |                  | Pi<br>Pe        | 5-4-8   |
|           |         | of Home Routine Start method                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |                  |                 |         |
|           | Setting | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |      |                  |                 |         |
| Pn365.2   | 0       | Homing routine is <b>Disabled.</b><br>On power up and activation of <b>Servo on</b> the<br>home routine is started automatically.<br>This method is useful for applications that do<br>not require repeated home routines. No<br>external home reference switch is required.                                                                                                                                                                                                                         | 0       | х    | 0<br> <br>2      |                 |         |
|           | 2       | Use <b>SHOME</b> input contact to start a home routine.<br>In position mode, <b>SHOME</b> can be used to start a home routine at any moment.                                                                                                                                                                                                                                                                                                                                                         |         |      |                  |                 |         |

| Parameter |                                                           |                                                                                                                                                                                                                                                                    |                                                                                                                              |                                                                                                          | e & Fu                                                                                                              |                                                                           |                                                                                                             |                                                                                                                            |                                                                              |                      | Default | Unit | Setting<br>Range | Control<br>Mode | Chapter |
|-----------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------|---------|------|------------------|-----------------|---------|
| Pn365.3   | Setting<br>signal.<br>Setting<br>0                        | Affi<br>po<br>en<br>Ur<br>all<br>Th<br>defi<br>defi<br>Affi<br>po<br>en<br>Ur                                                                                                                                                                                      | ter deta<br>sition<br>coder<br><b>n-15</b> er<br>0), mo<br>nen it re<br>tect the<br>celerat<br>ter deta<br>sition t<br>coder | ectin<br>to be<br>feed<br>ncode<br>otor c<br>evers<br>e Hor<br>tes al<br>ectin<br>to be<br>feed<br>ncode | Ex<br>g the<br>e the<br>d bac<br>er fee<br>lecele<br>ses dii<br>me Pc<br>nd sto<br>g the<br>the H<br>back<br>er fee | olar<br>Ho<br>Ho<br>k<br>d b<br>rate<br>ps.<br>Hor<br>lom<br>rota<br>d ba | nation<br>ome some r<br>rotati<br>pack p<br>es an<br>tion in<br>ion ag<br>me si<br>ne ref<br>ating<br>ack p | n<br>signal,<br>refere<br>ing ni<br>bulse<br>id stop<br>n 2 <sup>nd</sup><br>gain th<br>gain th<br>gaal,<br>rerenc<br>numb | it se<br>nce<br>numbe<br>numbos.<br>spee<br>nen it<br>e (Ui<br>er ar<br>numb | t<br>ts this<br>n-14 | 0       | x    | 0<br> <br>1      | Pi<br>Pe        | 5-4-8   |
| Pn366     | Machine<br>(Fast)<br>HOME F                               | Ho                                                                                                                                                                                                                                                                 | me ref                                                                                                                       | ieren                                                                                                    | ce se                                                                                                               | earc                                                                      | ch sp                                                                                                       | eed.                                                                                                                       | 1 <sup>st</sup> :                                                            | speed                | 100     | rpm  | 0<br> <br>2000   | Pi<br>Pe        | 5-4-8   |
| Pn367     | Machine<br>(Slow)<br>Home pc                              | Ho                                                                                                                                                                                                                                                                 | me po                                                                                                                        | sitio                                                                                                    | n sea                                                                                                               | rch                                                                       | n spe                                                                                                       | ed.                                                                                                                        |                                                                              | Speed                | 50      | rpm  | 0<br> <br>500    | Pi<br>Pe        | 5-4-8   |
| Pn368     | Home po<br>Once the<br>accordan<br>will searc<br>paramete | e position offset . Number of revolutions.<br>e the searched home position is found in<br>rdance with Pn365 (Home routine mode), then it<br>earch by a number of revolutions and pulses set ir<br>meters Pn368 and Pn 369 to find the new (off set)<br>e position. |                                                                                                                              |                                                                                                          |                                                                                                                     | nen it<br>s set in                                                        | 0                                                                                                           | rev                                                                                                                        | -30000<br> <br>30000                                                         | Pi<br>Pe             | 5-4-8   |      |                  |                 |         |
|           | Home Off<br>Number of                                     | ome position offset . Number of Pulses.<br>ome Offset position = Pn368(Rotate Number) x<br>umber of Encoder Pulse per Rotation x 4<br>Pn369(Pulse Number)                                                                                                          |                                                                                                                              |                                                                                                          |                                                                                                                     |                                                                           | 0                                                                                                           | pulse                                                                                                                      | -32767<br> <br>32767                                                         | Pi<br>Pe             | 5-4-8   |      |                  |                 |         |

# Quick Set-up Parameters

| Parameter      | Name & Function                                                                                                                                                                                                                                                                                                                                                                                                                             | Default | Unit       | Setting<br>Range | Control<br>Mode | Chapter      |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|------------------|-----------------|--------------|
| <b>♦</b> qn401 | Speed Loop Gain 1.(Same function as Sn211)Speed loop gain has a direct effect on the frequency<br>response bandwidth of the Speed-control loop.Without causing vibration or noise Speed-loop-gain<br>can be increased to obtain a faster speed response.If Cn025 (load Inertia ratio) is correctly set, the<br>speed-loop-bandwidth will equal to speed-loop-gain.                                                                          | 40      | Hz         | 10<br> <br>450   | Pi<br>Pe<br>S   | 5-3-8<br>5-5 |
| ∳qn402         | Speed-loop Integral time 1. (Same function as<br>Sn212)Speed loop integral element can eliminate the steady<br>speed error<br>and react to even slight speed variations.<br>Decreasing Integral time can improve system rigidity.<br>The formula below shows the relationship between<br>Integral time and Speed loop Gain.<br><br>SpeedLoopIntegrationTimeCons tan $t \ge 5 \times \frac{1}{2\pi \times SpeedLoopGain}$                    | 100     | x0.2<br>ms | 1<br> <br>500    | Pi<br>Pe<br>S   | 5-3-8<br>5-5 |
| <b>♦</b> qn403 | Speed Loop Gain 2. (Same function as Sn213)<br>Refer to qn401                                                                                                                                                                                                                                                                                                                                                                               | 40      | Hz         | 10<br> <br>450   | Pi<br>Pe<br>S   | 5-3-8<br>5-5 |
| <b>♦</b> qn404 | Speed Loop Integration Time Constant 2.<br>(Same function as Sn214)<br>Refer to qn402                                                                                                                                                                                                                                                                                                                                                       | 100     | x0.2<br>ms | 1<br> <br>500    | Pi<br>Pe<br>S   | 5-3-8<br>5-5 |
| ∳qn405         | Position Loop Gain 1.(Same function as<br>Pn310)Without causing vibration or noise on the mechanical<br>system the position loop gain value can be<br>increased to speed up response and shorten the<br>positioning time.<br>Generally, the position loop bandwidth should not be<br>higher then speed loop bandwidth. The relationship<br>is according to the formula below:<br>$PositionLoopGain \le 2\pi \times \frac{SpeedLoopGain}{5}$ | 40      | 1/s        | 1<br> <br>450    | Pi<br>Pe        | 5-4-6<br>5-5 |
| <b>♦</b> qn406 | Position Loop Gain 2 (Same function as<br>Pn311)<br>Please refer to qn405                                                                                                                                                                                                                                                                                                                                                                   | 40      | 1/s        | 1<br> <br>450    | Pi<br>Pe        | 5-4-6<br>5-5 |
| <b>∳</b> qn407 | Position Loop Feed Forward Gain         It can be used to reduce the follow up error of position control and speed up the response.         If the feed forward gain is too large, it might cause speed         Overshoot and in position oscillations which result in the repeated ON/OFF operation of the output contact         INP("In Position" output signal).                                                                        | 0       | %          | 0<br> <br>100    | Pi<br>Pe        | 5-4-6<br>5-5 |



## Multi-Function Input Parameters

All digital inputs D1 to D13 are programmable and can be set to one of the functions listed below. Hn 501 which includes Hn 501.0 ,Hn501.1, Hn501.2 is used for digital input 1 (D1-1).

Hn502 to Hn513 are used for setting digital inputs 2 to 13.( D1-2 to D1-13).

| Parameter        |         |                         | lame & Function                                                                        | Default | Unit | Setting<br>Range | Control<br>Mode | Chapter |
|------------------|---------|-------------------------|----------------------------------------------------------------------------------------|---------|------|------------------|-----------------|---------|
|                  | DI-1    |                         |                                                                                        |         |      |                  |                 |         |
|                  | Seting  |                         | Explanation                                                                            |         |      |                  |                 |         |
|                  |         | Signal                  | Functions                                                                              |         |      |                  |                 |         |
|                  | 01      |                         | Servo On                                                                               |         |      |                  |                 |         |
|                  | 02      | ALRS                    | Alarm Reset                                                                            |         |      |                  |                 |         |
|                  | 03      | PCNT                    | PI/P Switching                                                                         |         |      |                  |                 |         |
|                  | 04      | CCWL                    | CCW Limit                                                                              |         |      |                  |                 |         |
|                  | 05      | CWL                     | CW Limit                                                                               |         |      |                  |                 |         |
|                  | 06      | TLMT                    | External Torque Limit                                                                  |         |      |                  |                 |         |
|                  | 07      | CLR                     | Clear Pulse Error Value                                                                |         |      |                  |                 |         |
|                  | 08      | LOK                     | Servo Lock                                                                             |         |      |                  |                 |         |
|                  | 09      | EMC                     | Emergency Stop                                                                         |         |      |                  |                 |         |
|                  | 0A      | SPD1                    | Speed 1                                                                                |         |      |                  |                 |         |
|                  | 0B      | SPD2                    | Speed 2                                                                                |         |      |                  |                 |         |
|                  | 0C      | MDC                     | Control Mode Switch                                                                    |         |      |                  |                 |         |
| ★Hn501.0         | 0D      | INH                     | Position Command Inhibit                                                               |         |      | 01               |                 |         |
| <b>★</b> Hn501.1 | 0E      | SPDINV                  | Speed Inverse                                                                          | 01      | х    | 26               |                 |         |
|                  | 0F      | G-SEL                   | Gain Select                                                                            | 01      | ~    |                  | ALL             |         |
|                  | 10      | GN1                     | Electronic Gear Ratio Numerator                                                        |         |      | 20               |                 |         |
|                  | 11      | GN2                     | Electronic Gear Ratio Numerator 2                                                      |         |      |                  |                 | 5-6-1   |
|                  | 12      | PTRG                    | Position Trigger                                                                       |         |      |                  |                 |         |
|                  | 13      | PHOLD                   | Position Hold                                                                          |         |      |                  |                 |         |
|                  | 14      | SHOME                   | Start Home                                                                             |         |      |                  |                 |         |
|                  | 15      | ORG                     | Home Position Reference (Origin)                                                       |         |      |                  |                 |         |
|                  | 16      | POS1                    | Internal Position select 1                                                             |         |      |                  |                 |         |
|                  | 17      | POS2                    | Internal Position select 2                                                             | ļ       |      |                  |                 |         |
|                  | 18      | POS3                    | Internal Position select 3                                                             | ļ       |      |                  |                 |         |
|                  | 19      | POS4                    | Internal Position select 4                                                             | ļ       |      |                  |                 |         |
|                  | 1A      |                         | Torque Inverse                                                                         | ļ       |      |                  |                 |         |
|                  | 1B      | RS1                     | Torque CW Selecting                                                                    | ļ       |      |                  |                 |         |
|                  | 1C      | RS2                     | Torque CCW Selecting                                                                   |         |      |                  |                 |         |
|                  |         | ogic State              | NO/NC Selection                                                                        |         |      |                  |                 |         |
|                  | Setting |                         | Explanatoin                                                                            |         |      |                  |                 |         |
| <b>★Hn501.2</b>  | 0       |                         | act state. NO (Normally Open).<br>g (IG24) to inputs, enables the<br>unction.          | 0       | х    | 0                |                 |         |
| (-1-1-1-1-1)     | 1       | Input cont<br>Disconneo | act state. NC (Normally Closed).<br>cting (IG24) from inputs, enables<br>ted function. |         |      |                  |                 |         |

★ New setting will become effective after re-cycling the power.

**Warning!** If any of programmable Inputs of DI-1 ~ DI-13 are set for the same type of function then the logic state selection ( NO or NC selection) for these inputs must be the same type. Otherwise an Alarm will be displayed. AL-07 (Abnormal DI/DO programming).



| Parameter<br>Signal | Name & Function               | Default | Unit | Setting<br>Range | Control<br>Mode | Chapter |
|---------------------|-------------------------------|---------|------|------------------|-----------------|---------|
|                     | DI-2                          |         | Ň    | 001              |                 | 5.0.4   |
| ★Hn502              | Plearse refer to <b>Hn501</b> | 002     | Х    | <br>11C          | ALL             | 5-6-1   |
|                     | DI-3                          |         |      | 001              |                 |         |
| ★Hn503              | Plearse refer to <b>Hn501</b> | 003     | Х    | <br>11C          | ALL             | 5-6-1   |
|                     | DI-4                          |         |      | 001              |                 |         |
| ★Hn504              | Plearse refer to <b>Hn501</b> | 104     | Х    | <br>11C          | ALL             | 5-6-1   |
|                     | DI-5                          |         |      | 001              |                 |         |
| ★Hn505              | Plearse refer to <b>Hn501</b> | 105     | Х    | <br>11C          | ALL             | 5-6-1   |
|                     | DI-6                          |         |      | 001              |                 |         |
| ★Hn506              | Plearse refer to <b>Hn501</b> | 006     | Х    | <br>11C          | ALL             | 5-6-1   |
|                     | DI-7                          |         |      | 001              |                 | /       |
| ★Hn507              | Plearse refer to <b>Hn501</b> | 007     | Х    | 11C              | ALL             | 5-6-1   |
|                     | DI-8                          |         |      | 001              |                 |         |
| ★Hn508              | Plearse refer to <b>Hn501</b> | 008     | Х    | <br>11C          | ALL             | 5-6-1   |
|                     | DI-9                          |         |      | 001              |                 |         |
| ★Hn509              | Plearse refer to <b>Hn501</b> | 009     | Х    | <br>11C          | ALL             | 5-6-1   |
|                     | DI-10                         |         |      | 001              |                 |         |
| ★Hn510              | Plearse refer to <b>Hn501</b> | 00A     | Х    | <br>11C          | ALL             | 5-6-1   |
|                     | DI-11                         |         |      | 001              |                 |         |
| ★Hn511              | Plearse refer to <b>Hn501</b> | 00B     | Х    | <br>11C          | ALL             | 5-6-1   |
|                     | DI-12                         |         |      | 001              |                 |         |
| ★Hn512              | Plearse refer to <b>Hn501</b> | 00C     | Х    | <br>11C          | ALL             | 5-6-1   |
|                     | DI-13                         |         |      | 001              |                 |         |
| ★Hn513              | Plearse refer to <b>Hn501</b> | 00E     | Х    | <br>11C          | ALL             | 5-6-1   |

★ New setting will become effective after re-cycling the power.

**Warning!** If any of programmable Inputs of DI-1 ~ DI-13 are set for the same type of function then the logic state selection ( NO or NC selection) for these inputs must be the same type. Otherwise an Alarm will be displayed. AL-07 (Abnormal DI/DO programming).

| Parameter        |                 | Ν          | lame & Function             | Default | Unit | Setting<br>Range | Control<br>Mode | Chapter |
|------------------|-----------------|------------|-----------------------------|---------|------|------------------|-----------------|---------|
|                  | DO-1<br>Setting |            | Explanation                 |         |      |                  |                 |         |
|                  | e e tag         | Signal     | Functions                   | _       |      |                  |                 |         |
|                  | 01              | RDY        | Servo Ready                 |         |      |                  |                 |         |
| ★Hn514.0         | 02              | ALM        | Alarm                       |         |      | 01               |                 |         |
| <b>★</b> Hn514.1 | 03              | ZS         | Zero Speed                  | 01      | Х    |                  |                 |         |
|                  | 04              | BI         | Brake Signal                |         |      | 08               |                 |         |
| / * \            | 05              | INS        | In Speed                    |         |      |                  | ALL             | 5-6-1   |
|                  | 06              | INP        | In Position                 |         |      |                  |                 |         |
|                  | 07              | HOME       | HOME                        |         |      |                  |                 |         |
|                  | 08              | INT        | In Torque                   |         |      |                  |                 |         |
|                  | DO-1            |            |                             |         |      | 0                |                 |         |
| ★Hn514.2         | ocung           |            | Explanation                 | 0       | x    | I I              |                 |         |
| 88988            | 0               | Close, wh  | en the output is activated. | 0       | ^    | 1                |                 |         |
| · · ·            | 1               | Open, wh   | en the output is activated. |         |      | •                |                 |         |
|                  | DO-2            |            |                             |         |      | 001              |                 |         |
| <b>★</b> Hn515   | Plearse         | refer to H | n514                        | 002     | Х    |                  | ALL             | 5-6-1   |
|                  |                 |            |                             |         |      | 108              |                 |         |
| 111-540          | DO-3            |            |                             |         | v    | 001              |                 | 504     |
| <b>★</b> Hn516   | Plearse         | refer to H | n514                        | 003     | X    | <br>108          | ALL             | 5-6-1   |
|                  | DO-4            |            |                             |         |      | 001              |                 |         |
| ★Hn517           | Plearse         | refer to H | n514                        | 006     | X    | <br>108          | ALL             | 5-6-1   |

New setting will become effective after re-cycling the power.

**Warning!** If any of programmable Inputs of DI-1 ~ DI-13 are set for the same type of function then the logic state selection ( NO or NC selection) for these inputs must be the same type. Otherwise an Alarm will be displayed. AL-07 (Abnormal DI/DO programming).



| Parameter<br>Signal | Name & Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Default | Unit | Setting<br>Range             | Control<br>Mode | Chapter    |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------------------------------|-----------------|------------|
| Hn518               | Digital input control method selection.Select digital input (13 pins) control method by<br>external terminal or communication. Convert Binary<br>code to Hex code for setting this parameter. DI and<br>binary bits table as below.<br>Ex. DI-1 is bit 0 and DI-13 is bit 12.DI-[]DI-[]DI-13DI-12DI-[]DI-13DI-12DI-1bit 12DI-[]DI-13DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1DI-1*O " Digital input control by external terminal.*O " Digital input control by communication.Set H0000 for Hn518 represent DI-1 ~ DI-13 are<br>controlled by external terminal and set H1FFF<br>represent all terminal is controlled by<br>communication.Ex. Set DI (1, 3, 6, 10, 12) for communication control<br>other pins by external terminal;<br>The corresponding binary code is :[0101000101001010< | H0000   | x    | H0000<br> <br>H1FFF<br>(HEX) | ALL             | 5-6-1<br>7 |
| Hn519               | Setting digital input status in communication<br>mode<br>Change Hn519 Hex code for setting digital input<br>status of communication control mode; Setting<br>method refer Hn518.<br>Binary code representation :<br>"0" : digital input contact OFF<br>"1" : digital input contact ON<br>Set H0000 for Hn518 represent DI-1 ~ DI-13 are<br>controlled by external terminal and set H1FFF<br>represent all terminal is controlled by<br>communication.<br><b>P.S.)This parameter should co-operate with</b><br>Hn518.                                                                                                                                                                                                                                                                                                       | H0000   | x    | H0000<br> <br>H1FFF<br>(HEX) | ALL             | 5-6-1<br>7 |



# **Display Parameter**

|                     | Falalletei                                                               |       |                                                                                                                                                                                                                               |
|---------------------|--------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Signal | Display                                                                  | Unit  | Explanation                                                                                                                                                                                                                   |
| Un-01               | Actual Motor Speed                                                       | rpm   | Motor Speed is displayed in rpm.                                                                                                                                                                                              |
| Un-02               | Actual Motor Torque                                                      | %     | It displays the torque as a percentage of the rated torue.<br>Ex: 20 are displayed. It means that the motor torque output is 20% of rated torque.                                                                             |
| Un-03               | Regenerative load rate                                                   | %     | Value for the processable regenerative power as 100% .<br>Displays regenerative power consumption in 10-s cycle.                                                                                                              |
| Un-04               | Accumulated load rate                                                    | %     | Value for the rated torque as 100%.<br>Displays effective torque in 10-s cyle.                                                                                                                                                |
| Un-05               | Max load rate                                                            | %     | Max value of accumulated load rate                                                                                                                                                                                            |
| Un-06               | Speed Command                                                            | rpm   | Speed command is displayed in rpm.                                                                                                                                                                                            |
| Un-07               | Position Error Value                                                     | pulse | Error between position command value and the actual position feedback.                                                                                                                                                        |
| Un-08               | Position Feed-back Value                                                 | pulse | The accumulated number of pulses from the encoder.                                                                                                                                                                            |
| Un-09               | ExternalVoltage Command                                                  | V     | External analog voltage command value in volts.                                                                                                                                                                               |
| Un-10               | (Vdc Bus)Main Loop<br>Voltage                                            | V     | DC Bus voltage in Volts.                                                                                                                                                                                                      |
| Un-11               | External Spped Limit<br>Command Value                                    | rpm   | External speed limit value in rpm.                                                                                                                                                                                            |
| Un-12               | External CCW Torque Limit<br>Command Value                               | %     | Ex: Display 100. Means current external CCW torque limit command is set to 100 %.                                                                                                                                             |
| Un-13               | External CW Torque<br>LimitCommand Value                                 | %     | Ex: Display 100. Means current external CW toque limit command is set to 100%.                                                                                                                                                |
| Un-14               | Motor feed back – Rotation<br>value (absolute value)                     | rev   | After power on, it displays motor rotation number as an absolute value.                                                                                                                                                       |
| Un-15               | Motor feed back – Less<br>then 1 rotation pulse<br>value(absolute value) | pulse | After power on, it displays the number of pulses for an incomplete revolution of the motor as an absolute value.                                                                                                              |
| Un-16               | Pulse command – rotation value(absolute value)                           | rev   | After power on, it displays pulse command input rotation number in absolute value.                                                                                                                                            |
| Un-17               | Pulse command – Less<br>then 1 rotation pulse<br>value(absolute value)   | pulse | After power on, it displays pulse command input for an incomplete rotation. pulse value is an absolute value.                                                                                                                 |
| Un-18               | Torque command                                                           | %     | It displays the torque command as a percentage of the rated torque.<br>Ex: Display. 50.Means current motor torque command is 50% of rated torque.                                                                             |
| Un-19               | Load inertia                                                             | x0.1  | When Cn002.2=0(Auto gain adjust disabled), it displays the current preset load inertia ratio from parameter Cn025.<br>When <b>Cn002.2=1</b> (Auto gain adjust enabled), it displays the current estimated load inertia ratio. |

## Diagnosis Parameter

| Parameter | Name & Function                                       | Chapter |  |
|-----------|-------------------------------------------------------|---------|--|
| dn-01     | Selected control mode                                 |         |  |
| dn-02     | Output terminal signal status.                        |         |  |
| dn-03     | Input terminal signal status.                         |         |  |
| dn-04     | Software version                                      | 3-2-2   |  |
| dn-05     | OG mode operation                                     |         |  |
| dn-06     | old position.                                         |         |  |
| dn-07     | uto offset adjustment of external analog command volt |         |  |
| dn-08     | Servo model code.                                     |         |  |



# Chapter 7 Communications function

## 7-1 Communications function (RS-232 & RS-485)

The Servo drive provides RS232 communication. The description below shows the communication wiring and communication protocol.

## 7-1-1 Communication wiring

#### RS-232

#### **Driver terminal D-Type 9Pins**

| Pin | Description   | Name |
|-----|---------------|------|
| 1   | unassignment  |      |
| 2   | Transmit Data | TxD  |
| 3   | Receive Data  | RxD  |
| 4   | unassignment  |      |
| 5   | Ground        | GND  |
| 6   | unassignment  |      |
| 7   | unassignment  |      |
| 8   | unassignment  |      |
| 9   | unassignment  |      |
|     |               |      |

## PC terminal D-Type 9Pins(female)

| Pin   | Description         | Name |
|-------|---------------------|------|
| 1     | Protective Ground   | PG   |
| <br>2 | Receive Data        | RxD  |
| <br>3 | Transmit Data       | TxD  |
| <br>4 | Data Terminal Ready | DTR  |
| <br>5 | Ground              | GND  |
| <br>6 | Data Set Ready      | DSR  |
| <br>7 | Request to Send     | RTS  |
| <br>8 | Clear to Send       | CTS  |
| 9     | Ring indicator      | RI   |
|       |                     |      |

Pin 4 and Pin 6 is a close loop Pin 7 and Pin 8 is a close loop

#### **RS-485**

## **Driver terminal D-Type 9Pins**

| Pin | Description         | Name   |
|-----|---------------------|--------|
| 1   | unassignment        |        |
| 2   | unassignment        |        |
| 3   | unassignment        |        |
| 4   | unassignment        |        |
| 5   | unassignment        |        |
| 6   | unassignment        |        |
| 7   | Serial transmission | Data+  |
| 8   | unassignment        |        |
| 9   | Serial transmission | Data - |

## PC terminal D-Type 9Pins(female)

| Pin | Description         | Name |
|-----|---------------------|------|
| 1   | Protective Ground   | PG   |
| 2   | Receive Data        | RxD  |
| 3   | Transmit Data       | TxD  |
| 4   | Data Terminal Ready | DTR  |
| 5   | Ground              | GND  |
| 6   | Data Set Ready      | DSR  |
| 7   | Request to Send     | RTS  |
| 8   | Clear to Send       | CTS  |
| 9   | Ring indicator      | RI   |



## 7-1-2 RS-232 Communication protocol and format

| Baud rate | 9600bps (Selection by <b>Cn037.1</b> ) |  |
|-----------|----------------------------------------|--|
| Parity    | No                                     |  |
| Data bit  | 8                                      |  |
| Stop bit  | 1                                      |  |

% Symbol H in folling sentence is for Hex representation.

#### (1) Read a word from servo drive >> Function code format: R5XxSs

- Xx : A request to read register " Xx " from slave device( Unit :Byte, Hex representation)
- Ss : Check Sum Ss ='R'+'5'+'X'+'x' ( Unit :Byte 
   Hex representation)
- Ex1: Read register address 30H and

( Convert  $\,{}^{\mathbb{F}}\,\mathsf{R530}\,{}_{\mathbb{J}}$  into ASCII codes )

Check Sum=52H+35H+33H+30H=EA H

→ R 5 3 0

Obtain Function code for read register address 30H: "R530EA \_

Servo drive response : %XxYySs

Ss is Check Sum, Ss='%'+'X'+'x'+'Y'+'y'

Response message of example 1:

0008H is the data store in register address 30H:

Check Sum=25H+30H+30H+30H+38H=EDH

% 0 0 0 8

Drive response message: "%0008ED\_

\* When function code incorrect , drive response : [!] (ASCII code: 21H )



#### (2) Read consecutive 2 words from drive >> Function code format: L5NnSs

Nn : A request to read register " Nn " from slave device ( Unit :Byte, Hex representation) Ss : Check Sum  $\$  Ss ='L'+'5'+'N'+'n' ( Unit : Byte, Hex representation)

Ex2: Read data from register address 60H and

( Convert  $\ensuremath{\,^{\ensuremath{\mathsf{I}}}}$  L560  $\ensuremath{_{\ensuremath{\mathbb{I}}}}$  into ASCII codes )

Check Sum=4CH+35H+36H+30H=E7

L 5 6 0

Obtain Function code for read register address 60H: [L560E7]

Servo drive response: %XxYyAaBbSs

Ss is Check Sum , Ss='%'+'X'+'x'+'Y'+'y'+'A'+'a'+'B'+'b'

XxYy is the data store in register address Nn+1,

AaBb is the data store in register address Nn

Response message of example 2:

0001 000AH is the data store in register 60H

Check Sum=25H+30H+30H+30H+31H+30H+30H+30H+41H=1B7H

% 0 0 0 1 0 0 A

Drive response message: <sup>©</sup>%0001000AB7 <sup>]</sup>

\* When function code incorrect , drive response :  $\llbracket ! \, \_$  (ASCII code: 21H )



#### (3) Write a word to drive → Function code format: W5XxYyZzSs

Xx : Address for write data (Unit :Byte 
 Hex representation)
YyZz : Writes the data contents (Unit :word, Hex representation)
Ss : Check Sum 
 Ss ='W'+'5'+'X'+'Y'+'Y'+'Z'+'z' (Unit :Byte, Hex representation)

Ex3: Write data 0008H to register 30H

( Convert 『W5300008』 into ASCII codes ) Check Sum=57H+35H+33H+30H+30H+30H+30H+38H=1B7H W 5 3 0 0 0 0 8 Obtain Function code for write data 0008H to register 30H : **『W5300008B7』** Drive response message : 『%』 (ASCII code :25H) \* When function code incorrect , drive response : 『!』 (ASCII code: 21H )

#### (4) Write consecutive 2 words to drive >> Function code format: M5NnXxYyAaBbSs

Nn : Address for write data( Unit :Byte < Hex representation) XxYy : Writes the data contents of address Nn+1 ( Unit :Word < Hex representation) AaBb : Writes the data contents of address Nn ( Unit :Word < Hex representation) Ss : Check Sum , Ss ='M'+'5'+'N'+'n'+'X'+'x'+'Y'+'y'+'A'+'a'+'B'+'b' ( Unit :Byte < Hex representation)

Ex4: Write data 0002 000BH to register 60H

( Convert 『M5600002000B』 into ASCII codes ) Check Sum=4DH+35H+36H+30H+30H+30H+30H+32H+30H+30H+30H+42H =27CH M 5 6 0 0 0 2 0 0 B Obtain Function code for write data 0002000BH to register 60H : 『M5600002000B7C』 Drive response message: 『%』 (ASCII code :25H ) \* When function code incorrect , drive response : 『!』 (ASCII code: 21H )



#### 7-1-3 Modbus communication protocol for RS-485

The MODBUS protocol allows an easy communication within types of network architectures, before start to communication with slave device, set the ID number ( **Cn036**) for Servo drive respectively, server distinguish ID number for controlling specific client station.

Standard Modbus networks combine two transmission modes: ASCII or RTU: ASCII(American Standard Code for information interchange) Mode and RTU (Remote Terminal Unit) Mode, Use **Cn038 to** select ASCII or RTU mode.

# Coding method

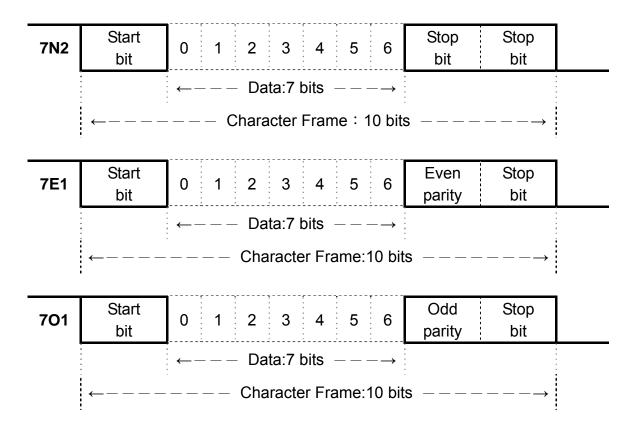
## ASCII Mode

8-bits Data consist of two ASCII code.

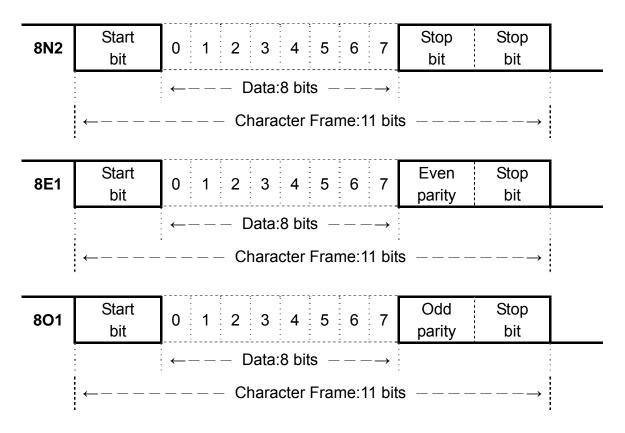
Ex: Data 26H 1-byte , the '26' convert to ASCII code is include character '2'  $\rightarrow$  <32H> and '6'  $\rightarrow$  <36H> ASCII Chart (0 ~ 9 and A ~ F):

| Character       | '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|
| ASCII code(Hex) | 30H | 31H | 32H | 33H | 34H | 35H | 36H | 37H |
| Character       | '8' | ʻ9' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' |
| ASCII code(Hex) | 38H | 39H | 41H | 42H | 43H | 44H | 45H | 46H |

#### **RTU Mode**


Each 8bits is consist of 2 Hex number (4-bits per Hex number).

Ex.: Data 26H, the data length is 1-byte.




## ASCII Mode Framing

## 10 bits Frame (7-bits Data)



#### 11 bits Frame (8-bits Data)





# ASCII Mode Framing

| Symbol        | Name               | Description                                          |
|---------------|--------------------|------------------------------------------------------|
| STX           | Comm. start        | 3AH, Char ':'                                        |
|               |                    | Include 2 ASCII code within 1-byte                   |
| ADR           | Slave address      | Comm. add : 1 ~ 254 convert to Hex representation ;  |
| ADK           | Slave address      | Ex. Servo drive ADR is No.20 convert to 14H ;        |
|               |                    | ADR = '1' , '4' → '1' = 31H , '4' = 34H              |
|               |                    | Include 2 ASCII code within 1-byte                   |
| Function Code | Code Function code | Function codes: 03H : Read the register contents,    |
| Function Code | Function code      | 06H:Write Single Register , 08H:Diagnostic function, |
|               |                    | 10H : Write Multipile Registers                      |
| DATA(n-1)     |                    | n-word = 2n-byte (ASCII numbers : 4n ), n≦30         |
|               | Data               |                                                      |
| DATA(0)       |                    | The format of data is depend on Function code        |
| LRC           | Check code         | Include 2 ASCII code within 1-byte                   |
| END 1         | END 1 (CR)         | 0DH;Char'\rʻ                                         |
| END 0         | END 0 (LF)         | 0AH;Char ' \ n '                                     |

#### **RTU Mode**

| Symbol                    | Name             | Description                                                                                                                                                                                 |
|---------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STX                       | Comm. start      | Excess comm. loss time setting 10ms                                                                                                                                                         |
| ADR                       | Slave address    | 1-byte<br>Comm. address : 1 ~ 254 · convert to Hex representation ;<br>Ex. Comm. address = 20 convert representation to 14 Hex, ADR<br>= '14H'                                              |
| Function Code             | Function code    | <ul> <li>1-byte</li> <li>Function codes: 03H: Read the register contents,</li> <li>06H: Write Single Register, 08H: Diagnostic function,</li> <li>10H: Write Multipile Registers</li> </ul> |
| DATA(n-1)<br> <br>DATA(0) | Data             | n-word = 2n-byte ; $n \le 30$<br>The format of data is depend on Function code                                                                                                              |
| CRC-Low                   | Checking code-LO | 1-byte                                                                                                                                                                                      |
| CRC-High                  | Checking code-HI | 1-byte                                                                                                                                                                                      |
| END 0                     | End 0            | Excess comm. loss time setting 10ms                                                                                                                                                         |



# **Common function codes**

**03H** : Read the register contents

Continuous read N words. \* Largest number of N is 29 (1DH)

Ex.: Read two words (register 0200H and 0201H) from Slave address 01H.

#### ASCII Mode

Query PC  $\rightarrow$  Servo

Servo → PC (ERROR)

| Query PC $\rightarrow$ Servo |            |       |  |  |
|------------------------------|------------|-------|--|--|
| ST                           | ' . '<br>· |       |  |  |
| AD                           | ' 0 '      |       |  |  |
| AD                           | К          | '1'   |  |  |
| Functior                     | ' 0 '      |       |  |  |
| Function                     | I Coue     | ' 3 ' |  |  |
|                              | (Hi)       | ' O ' |  |  |
| Register                     | (111)      | ' 2 ' |  |  |
| ADD.                         | (Lo)       | ' O ' |  |  |
|                              |            | ' O ' |  |  |
|                              | ' O '      |       |  |  |
| Data le                      | ength      | ' O ' |  |  |
| (wo                          | rd)        | ' 0 ' |  |  |
|                              |            | ' 2 ' |  |  |
|                              | ' F '      |       |  |  |
| LRC                          |            | ' 8 ' |  |  |
| END1 (CR)                    |            | (0DH) |  |  |
| END0 (LF)                    |            | (0AH) |  |  |

| Response Servo $\rightarrow$ PC OK) |            |       |  |
|-------------------------------------|------------|-------|--|
| ST                                  | ' . '<br>· |       |  |
| A                                   | סו         | ' 0 ' |  |
| AL                                  |            | ' 1 ' |  |
| Functio                             | n Code     | ' 0 ' |  |
|                                     | ii Code    | ' 3 ' |  |
| Data I                              | ength      | ' 0 ' |  |
| (by                                 | rte)       | ' 4 ' |  |
| Data of                             | (Hi)       | ' O ' |  |
| 0200H                               |            | ' 0 ' |  |
| 020011                              | (Lo)       | 'В'   |  |
|                                     |            | ' 1 ' |  |
| Data of                             | (Hi)       | '1'   |  |
| 0201H                               | (11)       | ' F ' |  |
| 020111                              | (1 0)      | ' 4 ' |  |
|                                     | (Lo)       | ' 0 ' |  |
| LF                                  | 'E'        |       |  |
|                                     | ' 8 '      |       |  |
| END1 (CR)                           |            | (0DH) |  |
| END0 (LF)                           |            | (0AH) |  |

| STX       | ' : ' |
|-----------|-------|
| ADR       | ' 0 ' |
| ADK       | '1'   |
| Function  | ' 8 ' |
| Code      | ' 3 ' |
| Exception | ' 0 ' |
| code      | ' 2 ' |
| LRC       | '7'   |
| LRC       | ' A ' |
| END1 (CR) | (0DH) |
| END0 (LF) | (0AH) |
|           |       |

## **RTU Mode**

| Query PC → Servo | Query | PC | $\rightarrow$ | Servo |
|------------------|-------|----|---------------|-------|
|------------------|-------|----|---------------|-------|

| ADR           |                                   |
|---------------|-----------------------------------|
| Function Code |                                   |
| (Hi)          | 02H                               |
| (Lo)          | 00H                               |
| Data length   |                                   |
| (word)        |                                   |
| CRC(Lo)       |                                   |
| CRC(Hi)       |                                   |
|               | Code<br>(Hi)<br>(Lo)<br>ngth<br>) |

#### Response Servo →PC (OK)

| 01H   |
|-------|
| UIII  |
| 03H   |
| 04H   |
| ) 00H |
| ) BAH |
| ) 1FH |
| ) 40H |
| A3H   |
| D4H   |
|       |

#### Servo → PC (ERROR)

| ADR           | 01H |
|---------------|-----|
| Function Code | 83H |
| Exception     | 02H |
| CRC(Lo)       | COH |
| CRC(Hi)       | F1H |



#### 06H : Write Single Register

Write a word into register.

Ex : Write data (0064H) into register address 0200H and slave ADR= 01

## **ASCII Mode**

Query PC → Servo

Response Servo→PC (OK)

Servo → PC (ERROR)

| Query PC - Servo     |      |            |
|----------------------|------|------------|
| STX                  |      | · . '<br>· |
|                      |      | ' O '      |
| ADR                  |      | '1'        |
| Function Code        |      | ' O '      |
|                      |      | ' 6 '      |
|                      |      | ' O '      |
| Register             | (Hi) | ' 2 '      |
| ADD                  | (Lo) | ' O '      |
|                      |      | ' O '      |
| Write data<br>(word) |      | ' O '      |
|                      |      | ' O '      |
|                      |      | ' 6 '      |
|                      |      | ' 4 '      |
| LRC                  |      | ' 9 '      |
|                      |      | ' 3 '      |
| END1 (CR)            |      | (0DH)      |
| END0 (LF)            |      | (0AH)      |

| Response Servo→PC (OK) |       |            |  |
|------------------------|-------|------------|--|
| STX                    |       | ' . '<br>· |  |
|                        |       | ' O '      |  |
| ADR                    |       | ' 1 '      |  |
| Function Code          |       | ' O '      |  |
| Function               | Code  | ' 6 '      |  |
|                        | (LII) | ' O '      |  |
| Register               | (Hi)  | ' 2 '      |  |
| ADD.                   | (Lo)  | ' O '      |  |
|                        |       | ' O '      |  |
| Write data<br>(word)   |       | ' O '      |  |
|                        |       | ' O '      |  |
|                        |       | ' 6 '      |  |
|                        |       | ' 4 '      |  |
|                        |       | ' 9 '      |  |
| LRC                    |       | ' 3 '      |  |
| END1 (CR)              |       | (0DH)      |  |
| END0 (LF)              |       | (0AH)      |  |

| STX       | ' . '<br>· |
|-----------|------------|
| ADR       | ' 0 '      |
| ADR       | '1'        |
| Function  | ' 8 '      |
| Code      | ' 6 '      |
| Exception | ' 0 '      |
| code      | ' 3 '      |
| LRC       | '7'        |
| LKC       | ' 6 '      |
| END1 (CR) | (0DH)      |
| END0 (LF) | (0AH)      |
|           |            |

#### **RTU Mode**

Query PC  $\rightarrow$  Servo

| ADR           |      | 01H |
|---------------|------|-----|
| Function Code |      | 06H |
| Registe<br>r  | (Hi) | 02H |
| ADD           | (Lo) | 00H |
| Write data    |      | 00H |
| (word)        |      | 64H |
| CRC(Lo)       |      | 89H |
| CRC(Hi)       |      | 99H |

| ADR           |      | 01H |
|---------------|------|-----|
| Function Code |      | 03H |
| Registe       | (Hi) | 02H |
| TADD.         | (Lo) | 00H |
| Write data    |      | 00H |
| (word)        |      | 64H |
| CRC(Lo)       |      | 89H |
| CRC(Hi)       |      | 99H |
|               | •    |     |

Servo → PC (ERROR)

| 01H |
|-----|
| 86H |
| 03H |
| 030 |
| 02H |
| 61H |
|     |



08H : Diagnostic function

The sub-function code 0000H is able to check communication signal between Master and Slaver. Data content is random value.

Ex: Use the diagnostic function for ID=01H

#### ASCII Mode

Query PC → Servo

| STX            |       | ' . '<br>- |
|----------------|-------|------------|
|                |       | ' 0 '      |
| ADR            |       | '1'        |
| Function Code  |       | ' 0 '      |
|                |       | ' 8 '      |
| Cub            | (111) | ' 0 '      |
| Sub-           | (HI)  | ' 0 '      |
| Function       | (Lo)  | ' O '      |
|                |       | ' 0 '      |
| Data<br>(word) |       | ' A '      |
|                |       | ' 5 '      |
|                |       | ' 3 '      |
|                |       | '7'        |
| LRC            |       | '1'        |
|                |       | ' B '      |
| END1 (CR)      |       | (0DH)      |
| END0 (LF)      |       | (0AH)      |

| STX            |      | ' . ' |
|----------------|------|-------|
| ADR            |      | ' 0 ' |
|                |      | '1'   |
| Function Code  |      | ' O ' |
|                |      | ' 8 ' |
| Curk           | (11) | ' O ' |
| Sub-           | (HI) | ' 0 ' |
| Function       | (Lo) | ' O ' |
|                |      | ' O ' |
| Data<br>(word) |      | ' A ' |
|                |      | ' 5 ' |
|                |      | ' 3 ' |
|                |      | '7'   |
| LRC            |      | '1'   |
|                |      | ' B ' |
| END1 (CR)      |      | (0DH) |
| END0 (LF)      |      | (0AH) |
|                |      |       |

Response Servo  $\rightarrow$  PC (OK)

#### Servo → PC (ERROR)

| STX       | ' . '<br>· |
|-----------|------------|
| ADR       | ' 0 '      |
|           | '1'        |
| Function  | ' 8 '      |
| Code      | ' 8 '      |
| Exception | ' 0 '      |
| code      | ' 3 '      |
| LRC       | '7'        |
|           | ' 4 '      |
| END1 (CR) | (0DH)      |
| END0 (LF) | (0AH)      |
|           |            |

#### **RTU Mode**

Query PC → Servo

| ADR              |      | 01H |
|------------------|------|-----|
| Function Code    |      | 08H |
| Sub-<br>Function | (HI) | 00H |
|                  | (Lo) | 00H |
| Data             |      | A5H |
| (word)           |      | 37H |
| CRC(Lo)          |      | DAH |
| CRC(Hi)          |      | 8DH |

| Response Servo | →PC | (OK) |
|----------------|-----|------|
|----------------|-----|------|

| ADR              |      | 01H |
|------------------|------|-----|
| Function Code    |      | 08H |
| Sub-<br>Function | (HI) | 00H |
|                  | (Lo) | 00H |
| Data             |      | A5H |
| (word)           |      | 37H |
| CRC(Lo)          |      | DAH |
| CRC(Hi)          |      | 8DH |

| 01H |
|-----|
| 88H |
| 03H |
| 030 |
| 06H |
| 01H |
|     |



## 10H : Write Multipile Registers

Continuously write N words to register. \* Largest number of N is 27 (1BH) Ex.: Write data (0064H) and (012CH) into register address 100H and 101H respectively.

## ASCII Mode

| Query PC → Servo |                       |           |
|------------------|-----------------------|-----------|
| STX              |                       | ۰. ،<br>- |
| ٨٢               | ADR                   |           |
| AL               |                       | '1'       |
| Function Code    |                       | '1'       |
| Function         | n code                | ' O '     |
|                  | (LII)                 | ' O '     |
| Register         | (HI)                  | '1'       |
| ADD              | (1.0)                 | ' O '     |
|                  | (Lo)                  | ' O '     |
|                  |                       | ' O '     |
| Data I           | Data length<br>(word) |           |
| (wo              |                       |           |
|                  |                       | ' 2 '     |
| Byte counters    |                       | ' O '     |
| (byte)           |                       | ' 4 '     |
|                  | (HI)                  | ' O '     |
| ADD.             | (111)                 | ' O '     |
| 0100H            | (1 0)                 | ' 6 '     |
|                  | (Lo)                  | ' 4 '     |
|                  | (LII)                 | ' O '     |
| ADD.             | (HI)                  | '1'       |
| 0101H            | (Lo)                  | ' C '     |
|                  |                       | ' 2 '     |
| LRC              |                       | ʻ 5 '     |
|                  |                       | '7'       |
| END1 (CR)        |                       | (0DH)     |
| END0 (LF)        |                       | (0AH)     |

| Response Servo →PC (OK) |       |            |
|-------------------------|-------|------------|
| ST                      | X     | ' . '<br>· |
| ADR                     |       | ' O '      |
|                         |       | '1'        |
| Function Code           |       | '1'        |
|                         |       | ' O '      |
|                         | (111) | ' O '      |
| Register<br>ADD         | (HI)  | '1'        |
|                         | (Lo)  | ' O '      |
|                         |       | ' 0 '      |
| Data length<br>(word)   |       | ' 0 '      |
|                         |       | ' O '      |
|                         |       | ' 0 '      |
|                         |       | ' 2 '      |
| LRC                     |       | 'E'        |
|                         |       | ' C '      |
| END1 (CR)               |       | (0DH)      |
| END0 (LF)               |       | (0AH)      |

| Servo → PC (ERROR) |            |
|--------------------|------------|
| STX                | ' . '<br>· |
| ADR                | ' 0 '      |
|                    | '1'        |
| Function           | ' 9 '      |
| Code               | ' 0 '      |
| Exception          | ' 0 '      |
| code               | ' 2 '      |
| LRC                | ' 6 '      |
|                    | ' D '      |
| END1 (CR)          | (0DH)      |
| END0 (LF)          | (0AH)      |



### **RTU Mode**

Query PC → Servo

| ADI             | 01H       |     |  |
|-----------------|-----------|-----|--|
| Function        | Code      | 10H |  |
| Register<br>ADD | (HI)      | 01H |  |
| ADD             | (Lo)      | 00H |  |
| Data le         | 00H       |     |  |
| (wor            | 02H       |     |  |
| Byte co         | 04H       |     |  |
| Data            | Data (HI) |     |  |
| 0100H           | (Lo)      | 64H |  |
| Data            | Data (HI) |     |  |
| 0101H           | 2CH       |     |  |
| CRC(            | BFH       |     |  |
| CRC(            | ADH       |     |  |

Response Servo →PC (OK)

| AD       | 01H           |     |  |  |
|----------|---------------|-----|--|--|
| Function | Function Code |     |  |  |
| Register | (HI)          | 01H |  |  |
| ADD      | (Lo)          | 00H |  |  |
| Data le  | 00H           |     |  |  |
| (wor     | 02H           |     |  |  |
| CRC(     | 40H           |     |  |  |
| CRC(Hi)  |               | 34H |  |  |

Servo → PC (ERROR)

| ADR           | 01H  |  |
|---------------|------|--|
| Function Code | 90H  |  |
| Exception     | 02H  |  |
| code          | 0211 |  |
| CRC(Lo)       | CDH  |  |
| CRC(Hi)       | C1H  |  |

# LRC (ASCII Mode ) and CRC (RTU Mode) Check methods LRC Checking:

ASCII Mode LRC (Longitudinal Redundancy Check) checking method

The LRC is calculated by adding together successive 8-bit bytes of the message, discarding any carries.

Ex. add ADR, Function code, register address and data contents together, if it get the sum 19DH then discard carrier "1" and find two's complement for 9DH to obtain LRC code.

Ex: Execute diagnostic function for Servo drive ID =01H

| STX          | ' . '<br>·    |       |  |
|--------------|---------------|-------|--|
| ADR          |               |       |  |
| ADR          |               | '1'   |  |
| Eupetion     | Function code |       |  |
| Function     |               |       |  |
|              | (HI)          | ' 0 ' |  |
| Sub-function | (111)         | ' O ' |  |
|              | (Lo)          | ' O ' |  |
|              | (LO)          | ' 0 ' |  |

| Data (word) | ' A ' |
|-------------|-------|
|             | ' 5 ' |
|             | ' 3 ' |
|             | '7'   |
| LRC         | '1'   |
|             | 'В'   |
| END1 (CR)   | (0DH) |
| END0 (LF)   | (0AH) |

01H+08H+00H+00H+A5H+37H = E5H

Two's complement for E5H is 1BH ; derive LRC code: ' 1 ' , ' B '



### **CRC Checking:**

CRC check code is from Slave Address to end of the data. The calculation method is illustrated as follow:

(1) Load a 16-bit register with FFFF hex (all1's). Call this the CRC register.

(2) Exclusive OR the first 8-bit byte of the message with the low-order byte of the 16-bit CRC register, putting the result in the CRC register.

(3) Shift the CRC register one bit to the right (toward the LSB), Zero-filling the MSB, Extract and examines the LSB.

(4) (If the LSB was 0): Repeat Steps (3) (another shift) (If the LSB was 1):

Exclusive OR the CRC register with the polynomial value A001 hex (1010 0000 0000 0001).

(5) Repeat Steps (3) and (4) until 8 shifts been performed. When this is done, a complete 8-bit byte will be processed.

(6) Repeat Steps (2) through (5) for next 8-bit byte of the message, Continue doing this until all bytes have been processed. The final content of the CRC register is the CRC value.Placing the CRC into the message:

When the 16-bit CRC (2 8-bit bytes) is transmitted in the message, the low-order byte will be transmitted first, followed by the high-order byte, For example, if the CRC value is 1241 hex, the CRC-16 (Low) put the 41h, the CRC-16 (Hi) put the 12h.

#### Example :

An example of a C language function performing CRC generation is shown on the following pages. All of the possible CRC values are preloaded into two arrays, which are simply indexed as the function increments through the message buffer. One array contains all of the 256 possible CRC values for the high byte of the 16-bit CRC field, and the other array contains all of the values for the low byte.

Indexing the CRC in this way provides faster execution than would be achieved by calculating a new CRC value with each new character from the message buffer.

#### Note

This function performs the swapping of the high/low CRC bytes internally. The bytes are already swapped in the CRC value that is returned from the function.

Therefore the CRC value returned from the function can be directly placed into the message for transmission.

The function takes two arguments:

| unsigned char *puchMsg ;             | A pointer to the message buffer containing binary data |
|--------------------------------------|--------------------------------------------------------|
|                                      | to be used for generating the CRC                      |
| unsigned short usDataLen ;           | The quantity of bytes in the message buffer.           |
| The function returns the CRC as a ty | /pe unsigned short.                                    |



#### **CRC Generation Function**

```
unsigned short CRC16(puchMsg, usDataLen)
unsigned char *puchMsg;
                                                      /* message to calculate CRC upon*/
unsigned short usDataLen;
                                                      /* quantity of bytes in message*/
{
unsigned char uchCRCHi = 0xFF;
                                                 /* high byte of CRC initialized*/
unsigned char uchCRCLo = 0xFF;
                                                 /* low byte of CRC initialized*/
unsigned uIndex;
                                                      /* will index into CRC lookup table*/
while (usDataLen--)
                                                /* pass through message buffer
{
                                                /* calculate the CRC*/
uIndex = uchCRCHi ^ *puchMsgg++ ;
uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex};
uchCRCLo = auchCRCLo[uIndex];
}
return (uchCRCHi << 8 | uchCRCLo);
}
```

#### High-Order Byte Table

/\* Table of CRC values for high-order byte \*/

#### static unsigned char auchCRCHi[] = {

```
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40
```

```
};
```

#### Low-Order Byte Table

/\* Table of CRC values for low-order byte \*/

### static char auchCRCLo[] = {

```
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40
```

};

### **Exception Codes**

When communication error occur , servo drive is returned with an error code and Function code+80H return to the ModBus host controller.

| Code | Name                 | Description                                                         |
|------|----------------------|---------------------------------------------------------------------|
| 01   | I ILLEGAL FUNCTION I | The function code received in the query is not an allowable action  |
| 01   |                      | for the server (or slave).                                          |
| 02   | ILLEGAL DATA ADD.    | The data address received in the query is not an allowable          |
| 02   |                      | address for the server (or slave).                                  |
| 03   | ILLEGAL DATA VALUE   | A value contained in the query data field is not an allowable value |
| 03   |                      | for server (or slave).                                              |
| 04   | SLAVE DEVICE         | An unrecoverable error occurred while the server (or slave) was     |
| 04   | FAILURE              | attempting to perform the requested action.                         |
| 05   | RTU CHECK FAILURE    | RTU mode: CRC check error                                           |
| 06   | ASCII CHECK          | ASCII mode: LRC check error or no end code(CRLF)                    |
| 00   | FAILURE              | ASCITTIONE. LKC CHECK ETTOL OF THE ETH CODE(CKLF)                   |





### 7-2 Communication address table

All parameters allow to write data by communication excluding display parameters.

# System parameters

| Address |       |           |                                                              |
|---------|-------|-----------|--------------------------------------------------------------|
| RS485   | RS232 | Parameter | Name of parameter                                            |
| 0001    | 510H  | Cn001     | Control Mode                                                 |
| 0002    | 51DH  | Cn002     | DI Contacts function and Auto tunning                        |
| 0003    | 511H  | Cn003     | Output time setting for Mechanical Brake Signal              |
| 0004    | 512H  | Cn004     | Motor rotation direction                                     |
| 0005    | 513H  | Cn005     | Encoder pulse output scale                                   |
| 0006    | 514H  | Cn006     | Analog Monitor output Selection                              |
| 0007    | 515H  | Cn007     | Value for Speed reached                                      |
| 0008    | 516H  | Cn008     | Brake Modes                                                  |
| 0009    | 517H  | Cn009     | CW/CCW Drive inhibit                                         |
| 000A    | 518H  | Cn010     | CCW Torque command limit                                     |
| 000B    | 519H  | Cn011     | CW Torque command limit                                      |
| 000C    | 51AH  | Cn012     | Power setting for external Re-generation resistor            |
| 000D    | 5DEH  | Cn013     | Frequency of Notch Filter (Resonance Filter)                 |
| 000E    | 5DFH  | Cn014     | Band Width of the Resonance Filter.                          |
| 000F    | 58FH  | Cn015     | Gain selection.                                              |
| 0010    | 5F8H  | Cn016     | PI/P control switch Mode (Torque Command)                    |
| 0011    | 5F9H  | Cn017     | PI/P control switch Mode (Speed Command)                     |
| 0012    | 5FAH  | Cn018     | Switch-condition in PI/P mode (accelerate Command)           |
| 0013    | 5FBH  | Cn019     | PI/P control switch Mode (position error number)             |
| 0014    | 53CH  | Cn020     | Automatic Gain 1 & 2 switch delay time                       |
| 0015    | 53DH  | Cn021     | Automatic Gain 1 & 2 switch condition (Torque command)       |
| 0016    | 53EH  | Cn022     | Automatic Gain 1 & 2 switch condition (Speed Command)        |
| 0017    | 53FH  | Cn023     | Automatic Gain 1 & 2 switch condition (Acceleration          |
| 0017    | JUL   | 011025    | Command)                                                     |
| 0018    | 540H  | Cn024     | Automatic Gain 1 & 2 switch condition (Position error value) |
| 0019    | 587H  | Cn025     | Load-Inertia ratio                                           |
| 001A    | 5D0H  | Cn026     | Rigidity Setting                                             |
| 001B    | 58BH  | Cn027     | Analog monitor output 1 for offset adjustment                |
| 001C    | 58CH  | Cn028     | Analog monitor output 2 for offset adjustment                |
| 001D    | 5FDH  | Cn029     | Reset Parameter                                              |
| 001E    | 50BH  | Cn030     | Servo motor model code                                       |
| 001F    | 50EH  | Cn031     | Cooling fan running mode                                     |
| 0020    | 546H  | Cn032     | Speed feed-back smoothing filter                             |
| 0021    | 51EH  | Cn033     | Speed Feed-forward smoothing filter                          |
| 0022    | 5B8H  | Cn034     | Torque command smoothing filter                              |
| 0023    | 541H  | Cn035     | Panel display content selection                              |



| Add   | Address |           | Nome of perspector                                          |
|-------|---------|-----------|-------------------------------------------------------------|
| RS485 | RS232   | Parameter | Name of parameter                                           |
| 0024  | 51BH    | Cn036     | Servo ID number                                             |
| 0025  | 544H    | Cn037     | Braud rate setting for (Modbus RS-485 / PC Software RS-232) |
| 0026  | 545H    | Cn038     | Communication protocol selection                            |
| 0027  | 567H    | Cn039     | Communication time-out dection time                         |
| 0028  | 579H    | Cn040     | Communication response delay time                           |

# Torque control parameters

| Address |       | Parameter | Name of perspector                                |
|---------|-------|-----------|---------------------------------------------------|
| RS485   | RS232 | Falametei | Name of parameter                                 |
| 0101    | 520H  | Tn101     | Linear acceleration/deceleration method selection |
| 0102    | 523H  | Tn102     | Linear acceleration/deceleration time period      |
| 0103    | 521H  | Tn103     | Analog Torque Command Ratio                       |
| 0104    | 522H  | Tn104     | Analog torque command offset                      |
| 0105    | 526H  | Tn105     | Internal Speed Limit 1                            |
| 0106    | 527H  | Tn106     | Internal Speed Limit 2                            |
| 0107    | 528H  | Tn107     | Internal Speed Limit 3                            |
| 0108    | 5CDH  | Tn108     | Torque output monitor value                       |

# Speed control parameters

| Address |       | Decemptor Nome of perometer |                                                          |
|---------|-------|-----------------------------|----------------------------------------------------------|
| RS485   | RS232 | Parameter                   | Name of parameter                                        |
| 0201    | 536H  | Sn201                       | Internal Speed Command 1                                 |
| 0202    | 537H  | Sn202                       | Internal Speed Command 2                                 |
| 0203    | 538H  | Sn203                       | Internal Speed Command 3                                 |
| 0204    | 529H  | Sn204                       | Zero Speed preset selection                              |
| 0205    | 52AH  | Sn205                       | Speed command acceleration / deceleration methods        |
| 0206    | 52BH  | Sn206                       | Speed command Smooth acceleration/deceleration-time      |
| 0200    | JZDH  | 311200                      | constant                                                 |
| 0207    | 52CH  | 52CH Sn207                  | Speed command Linear acceleration/deceleration time      |
| 0207    | 52011 |                             | constant                                                 |
| 0208    | 52DH  | Sn208                       | S curve speed command acceleration and deceleration time |
| 0200    | 52011 | 311200                      | setting                                                  |
| 0209    | 52EH  | Sn209                       | S curve speed command acceleration time setting          |
| 020A    | 52FH  | Sn210                       | S curve speed command deceleration time setting          |
| 020B    | 530H  | Sn211                       | Speed loop Gain 1                                        |
| 020C    | 531H  | Sn212                       | Speed-loop Integral time constant 1                      |
| 020D    | 53AH  | Sn213                       | Speed loop Gain 2                                        |



| 020E | 53BH | Sn214 | Speed loop Integral time constant 2 |
|------|------|-------|-------------------------------------|
| 020F | 532H | Sn215 | Value of zero speed                 |

| Add   | ress  | Paramete | Name of persmater                  |  |
|-------|-------|----------|------------------------------------|--|
| RS485 | RS232 | r        | Name of parameter                  |  |
| 0210  | 533H  | Sn216    | Analog Speed Command Ratio         |  |
| 0211  | 534H  | Sn217    | Analog Speed Command offset adjust |  |
| 0212  | 599H  | Sn218    | Analog Speed Command Limit         |  |

# Position control parameters

| Ad    | dress     | Devenueter |                                                                             |
|-------|-----------|------------|-----------------------------------------------------------------------------|
| RS485 | RS232     | Parameter  | Name of parameter                                                           |
| 0301H | 550H      | Pn301      | Position command selection (for pulse type      logic and drive inhizibit ) |
| 0302H | 560H      | Pn302      | Electronic Gear Ratio Numerator 1                                           |
| 0303H | 561H      | Pn303      | Electronic Gear Ratio Numerator 2                                           |
| 0304H | 562H      | Pn304      | Electronic Gear Ratio Numerator 3                                           |
| 0305H | 563H      | Pn305      | Electronic Gear Ratio Numerator 4                                           |
| 0306H | 554H      | Pn306      | Electronic Gear Ratio Denominator                                           |
| 0307H | 552H,553H | Pn307      | Position complete value                                                     |
| 0308H | 556H,557H | Pn308      | Position error band upper limit                                             |
| 0309H | 558H,559H | Pn309      | Position error band lower limit                                             |
| 030AH | 55AH      | Pn310      | Position Loop Gain 1                                                        |
| 030BH | 551H      | Pn311      | Position Loop Gain 2                                                        |
| 030CH | 55BH      | Pn312      | Position Loop Feed Forward Gain                                             |
| 030DH | 55CH      | Pn313      | Position command Smooth Accel/Decel time constant                           |
| 030EH | 55DH      | Pn314      | Position Command Direction definition                                       |
| 030FH | 51FH      | Pn315      | Position Pulse error clear mode                                             |
| 0310H | 50DH      | Pn316      | Internal Position Command Mode                                              |
| 0311H | 568H      | Pn317      | Internal Position Command 1-Rotation Number                                 |
| 0312H | 569H      | Pn318      | Internal Position Command 1-Pulse Number                                    |
| 0313H | 56AH      | Pn319      | Internal Position Command 1-Move Speed                                      |
| 0314H | 56BH      | Pn320      | Internal Position Command 2-Rotation number                                 |
| 0315H | 56CH      | Pn321      | Internal Position Command 2-Pulse Number                                    |
| 0316H | 56DH      | Pn322      | Internal Position Command 2-Move Speed                                      |
| 0317H | 56EH      | Pn323      | Internal Position Command 3-Rotation number                                 |
| 0318H | 56FH      | Pn324      | Internal Position Command 3-Pulse Number                                    |
| 0319H | 575H      | Pn325      | Internal Position Command 3-Moving Speed                                    |
| 031AH | 576H      | Pn326      | Internal Position Command 4-Rotation number                                 |
| 031BH | 577H      | Pn327      | Internal Position Command 4-Pulse Number                                    |
| 031CH | 578H      | Pn328      | Internal Position Command 4-Move Speed                                      |



| 031DH | 59CH | Pn329 | Internal Position Command 5-Rotation Number |
|-------|------|-------|---------------------------------------------|
| 031EH | 59DH | Pn330 | Internal Position Command 5-Pulse Number    |

| Address |       | Paramete |                                               |  |
|---------|-------|----------|-----------------------------------------------|--|
| RS485   | RS232 | r        | Name of parameter                             |  |
| 031FH   | 59EH  | Pn331    | Internal Position Command 5- Move Speed       |  |
| 0320    | 59FH  | Pn332    | Internal Position Command 6-Rotation Number   |  |
| 0321    | 5A0H  | Pn333    | Internal Position Command 6-Pulse Number      |  |
| 0322    | 5A1H  | Pn334    | Internal Position Command 6- Move Speed       |  |
| 0323    | 5A2H  | Pn335    | Internal Position Command 7-Rotation Number   |  |
| 0324    | 5A3H  | Pn336    | Internal Position Command 7-Pulse Number      |  |
| 0325    | 5A4H  | Pn337    | Internal Position Command 7- Move Speed       |  |
| 0326    | 5A5H  | Pn338    | Internal Position Command 8-Rotation Number   |  |
| 0327    | 5A6H  | Pn339    | Internal Position Command 8-Pulse Number      |  |
| 0328    | 5A7H  | Pn340    | Internal Position Command 8- Move Speed       |  |
| 0329    | 5A8H  | Pn341    | Internal Position Command 9-Rotation Number   |  |
| 032A    | 5A9H  | Pn342    | Internal Position Command 9-Pulse Number      |  |
| 032B    | 5AAH  | Pn343    | Internal Position Command 9- Move Speed       |  |
| 032C    | 5ABH  | Pn344    | Internal Position Command 10-Rotation Number  |  |
| 032D    | 5ACH  | Pn345    | Internal Position Command 10-Pulse Number     |  |
| 032E    | 5ADH  | Pn346    | Internal Position Command 10-Move Speed       |  |
| 032F    | 5AEH  | Pn347    | Internal Position Command 11-Rotation Number  |  |
| 0330    | 5AFH  | Pn348    | Internal Position Command 11-Pulse Number     |  |
| 0331    | 5B3H  | Pn349    | Internal Position Command 11-Move Speed       |  |
| 0332    | 5E0H  | Pn350    | Internal Position Command 12-Rotation Number  |  |
| 0333    | 5E1H  | Pn351    | Internal Position Command 12-Pulse Number     |  |
| 0334    | 5E3H  | Pn352    | Internal Position Command 12-Move Speed       |  |
| 0335    | 5E4H  | Pn353    | Internal Position Command 13-Rotation Number  |  |
| 0336    | 5E5H  | Pn354    | Internal Position Command 13- Pulse Number    |  |
| 0337    | 5E6H  | Pn355    | Internal Position Command 13- Move Speed      |  |
| 0338    | 5E7H  | Pn356    | Internal Position Command 14-Rotation Number  |  |
| 0339    | 5E8H  | Pn357    | Internal Position Command 14- Pulse Number    |  |
| 033A    | 5E9H  | Pn358    | Internal Position Command 14- Move Speed      |  |
| 033B    | 5EAH  | Pn359    | Internal Position Command 15-Rotation Number  |  |
| 033C    | 5EBH  | Pn360    | Internal Position Command 15- Pulse Number    |  |
| 033D    | 5ECH  | Pn361    | Internal Position Command 15- Move Speed      |  |
| 033E    | 5EDH  | Pn362    | Internal Position Command 16- Rotation Number |  |
| 033F    | 5EEH  | Pn363    | Internal Position Command 16- Pulse Number    |  |
| 0340    | 5EFH  | Pn364    | Internal Position Command 16-Move Speed       |  |
| 0341    | 54AH  | Pn365    | Setting for HOME routine                      |  |
| 0342    | 54BH  | Pn366    | 1 st preset speed of HOME (high speed)        |  |



| 0343 | 54CH | Pn367 | 67 2 nd preset speed of HOME ( low speed ) |  |  |
|------|------|-------|--------------------------------------------|--|--|
| 0344 | 54DH | Pn368 | HOME Position Offset. (No of Revolutions)  |  |  |
| 0345 | 54EH | Pn369 | HOME – Bias Pulse value (No of pulses)     |  |  |

# Quick Setup parameters

| Address |       | Parameter | Name of parameter                       |  |
|---------|-------|-----------|-----------------------------------------|--|
| RS485   | RS232 | raiametei | Name of parameter                       |  |
| 0401    | 530H  | qn401     | Speed Loop Gain 1                       |  |
| 0402    | 531H  | qn402     | Integral Time constant for Speed Loop 1 |  |
| 0403    | 53AH  | qn403     | Speed Loop Gain 2                       |  |
| 0404    | 53BH  | qn404     | Integral Time constant for Speed Loop 2 |  |
| 0405    | 55AH  | qn405     | Position Loop Gain 1                    |  |
| 0406    | 551H  | qn406     | Position Loop Gain 2                    |  |
| 0407    | 55BH  | qn407     | Position Loop Feed-Forward Gain         |  |

# Multi-function programmable contact parameter

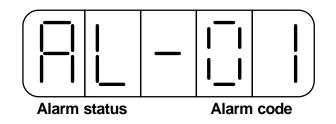
| Address |       | Parameter | Name of parameter                                  |  |  |
|---------|-------|-----------|----------------------------------------------------|--|--|
| RS485   | RS232 | Parameter | Name of parameter                                  |  |  |
| 0501    | 5C0H  | Hn501     | DI-1 Pragrammable digital inupt                    |  |  |
| 0502    | 5C1H  | Hn502     | DI-2 Pragrammable digital inupt                    |  |  |
| 0503    | 5C2H  | Hn503     | DI-3 Pragrammable digital inupt                    |  |  |
| 0504    | 5C3H  | Hn504     | DI-4 Pragrammable digital inupt                    |  |  |
| 0505    | 5C4H  | Hn505     | DI-5 Pragrammable digital inupt                    |  |  |
| 0506    | 5C5H  | Hn506     | DI-6 Pragrammable digital inupt                    |  |  |
| 0507    | 5C6H  | Hn507     | DI-7 Pragrammable digital inupt                    |  |  |
| 0508    | 5C7H  | Hn508     | DI-8 Pragrammable digital inupt                    |  |  |
| 0509    | 5C8H  | Hn509     | DI-9 Pragrammable digital inupt                    |  |  |
| 050A    | 5C9H  | Hn510     | DI-10 Pragrammable digital inupt                   |  |  |
| 050B    | 5CAH  | Hn511     | DI-11 Pragrammable digital inupt                   |  |  |
| 050C    | 5CBH  | Hn512     | DI-12 Pragrammable digital inupt                   |  |  |
| 050D    | 5CCH  | Hn513     | DI-13 Pragrammable digital inupt                   |  |  |
| 050E    | 5F4H  | Hn514     | DO-1 Pragrammable digital output                   |  |  |
| 050F    | 5F5H  | Hn515     | DO-2 Pragrammable digital output                   |  |  |
| 0510    | 5F6H  | Hn516     | DO-3 Pragrammable digital output                   |  |  |
| 0511    | 5F7H  | Hn517     | DO-4 Pragrammable digital output                   |  |  |
| 0512    | 5CEH  | Hn518     | Digital input control method selection             |  |  |
| 0513    | 5FFH  | Hn519     | Digital input status control in communication mode |  |  |





### Display parameters

| Add   | ress  | Parameter | Name of parameter                                                   |  |  |
|-------|-------|-----------|---------------------------------------------------------------------|--|--|
| RS485 | RS232 | Parameter | Name of parameter                                                   |  |  |
| 0601  | 6E4H  | Un-01     | Actual Motor Speed                                                  |  |  |
| 0602  | 9B6H  | Un-02     | Actual Motor Torque                                                 |  |  |
| 0603  | 691H  | Un-03     | Regenerative load rate                                              |  |  |
| 0604  | 693H  | Un-04     | Accumulated load rate                                               |  |  |
| 0605  | 694H  | Un-05     | Max load rate                                                       |  |  |
| 0606  | 678H  | Un-06     | Speed Command                                                       |  |  |
| 0607  | 65CH  | Un-07     | Position Error Value                                                |  |  |
| 0608  | 688H  | Un-08     | Position Feed-back Value                                            |  |  |
| 0609  | 632H  | Un-09     | ExternalVoltage Command                                             |  |  |
| 060A  | 6B7H  | Un-10     | (Vdc Bus) Main Loop Voltage                                         |  |  |
| 060B  | 695H  | Un-11     | External Spped Limit Command Value                                  |  |  |
| 060C  | 6C0H  | Un-12     | External CCW Torque Limit Command Value                             |  |  |
| 060D  | 6C1H  | Un-13     | External CW Torque Limit Command Value                              |  |  |
| 060E  | 8BBH  | Un-14     | Motor feed back – Rotation value (absolute value)                   |  |  |
| 060F  | 8BAH  | Un-15     | Motor feed back – Less then one rotation pulse                      |  |  |
| UOUF  | орап  | 01-15     | value(absolute value)                                               |  |  |
| 0610  | 8C5H  | Un-16     | Pulse command – rotation value(absolute value)                      |  |  |
| 0611  | 8C4H  | Un-17     | Pulse Command-Pulse value less than one<br>rotation(Absolute value) |  |  |
| 0612  | 67EH  | Un-18     | Torque command                                                      |  |  |
| 0613  | 844H  | Un-19     | Load inertia ratio                                                  |  |  |


▲ **元精電股份有限公司 TECO ELECTRO DEVICES CO., LTO.** 

# **Chapter 8 Troubleshooting**

### 8-1 Alarm functions

The Alarm codes are displayed in a format such as that shown below. For any Alarm messages, refer to this section for identify the cause and dispel the error. to reset the Alarm message by following pages description. If this is not possible for any reason then contact your local supplier for assistance.

Alarm Status Display :



For Alarm List refer to the section 8-2. In the example above AL-01 indicate (Under Voltage) There is also an Alarm history which can record ten entry of alarm record. History record is listed as alarm history record table shows.

### Alarm History Record

| Display | Explanation             |                 |
|---------|-------------------------|-----------------|
| AL - 00 | The Latest Alarm.       | Latest record   |
| A1 - 00 | Previous First Alarm.   | •               |
| A2 - 00 | Previous Second. Alarm. |                 |
| A3 - 🛛  | Previous Third Alarm.   |                 |
| A4 - 00 | Previous Fourth Alarm.  |                 |
| A5 - 🛛  | Previous Fifth Alarm.   |                 |
| A6 - 🛛  | Previous Sixth Alarm.   |                 |
| A7 - 00 | Previous Seventh Alarm. | ↓               |
| A8 - 🛛  | Previous Eighth Alarm.  | Earliest record |
| A9 - 00 | Previous Ninth Alarm.   | Lamest lecold   |

Note : DD is denotation of the Alarm Codes.



### Example:

Following table are procedures to access the alarm history record parameter.

| Steps | Key                  | LED Display | Procedures                                                                                                                                            |  |  |  |
|-------|----------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1     | Turn On<br>the Power |             | On" power on " <b>Drive Status</b> parameter is displayed.                                                                                            |  |  |  |
| 2     | MODE                 |             | Press <b>MODE key</b> to enter the Alarm History record.                                                                                              |  |  |  |
| 3     |                      |             | Press A Key to view the Alarm 1 message that previo happened and the alarm code is "03" (Overload)                                                    |  |  |  |
| 4     |                      |             | Press <b>Key</b> again to view Alarm 2 message and repeat this to see entire alarm history list.<br>In this example Alarm code is 01. (Under voltage) |  |  |  |
| 5     | MODE                 |             | Press MODE key once to view System Parameters.<br>Repeat this to select all other available parameters.                                               |  |  |  |

| Alarm | Alarm Name                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     | Reset                  | Fault Status Digital Output                    |                               |                         |                 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------|-------------------------------|-------------------------|-----------------|
| Code  | and Description                                                                                                                                                                              | Corrective Actions                                                                                                                                                                                                                                                                                                                                                                                  | Method                 | CN1-25<br>BB/A3                                | CN1-24<br>ST/A2               | CN1-23<br>PC/A1         | CN1-22<br>LM/A0 |
| 00    | Normal                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                     |                        | If there is no<br>operates in<br>function. Ple | o Alarm, <b>(</b><br>accordan | CN1-22~Cl<br>ce with de | N1-25           |
|       | Under-voltage                                                                                                                                                                                | Use multi-meter to check                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                |                               |                         |                 |
| 01    | The main circuit<br>voltage is below its<br>minimum specified<br>value. (190Vac)                                                                                                             | whether the input voltage is<br>within the specified limit. If it can<br>not be solved, there may be<br>failure inside the Drive.                                                                                                                                                                                                                                                                   | Turn<br>ALRS(DI)<br>ON | 1                                              | 1                             | 1                       | 0               |
| 02    | Over-voltage<br>(Regeneration error)<br>1. The main circuit<br>voltage is exceeded<br>maximum allowable<br>value. (410V)<br>2. Regeneration<br>voltage is too high.                          | <ul> <li>within the specified limit.</li> <li>2. Check the Parameter Cn012 if<br/>it is setting correctly.</li> <li>3. If this alarm appears during<br/>operation.</li> <li>Extend ac/deceleration time<br/>or reduce load ratio in the<br/>permitted range. Otherwise,<br/>an external regeneration<br/>resistor is needed.</li> <li>(Please contact your supplier<br/>for assistance.)</li> </ul> | Turn<br>ALRS(DI)<br>ON | 1                                              | 1                             | 0                       | 1               |
| 03    | Motor Over-load<br>The drive has<br>exceeded its rated<br>load during<br>continuous operation.<br>When the loading is<br>equal to 2 times of<br>rated loading, alarm<br>occurs within 10sec. | <ol> <li>Check connection for Motor<br/>terminal s (U,V,W) and<br/>Encoder.</li> <li>Adjust the Drive gain, If gain is<br/>not correctly adjusted, it would<br/>cause motor vibration and<br/>large current will lead to motor<br/>over load.</li> <li>Extend acc/deceleration time<br/>or reduce load ratio in the<br/>permitted range.</li> </ol>                                                 | Turn<br>ALRS(DI)       | 1                                              | 1                             | 0                       | 0               |
|       | Drive Over-current                                                                                                                                                                           | 1. Check connection of the motor                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                |                               |                         |                 |
| 04    | Drive main circuit<br>Over current or<br>Transistor error.                                                                                                                                   | <ul> <li>cable (U,V,W) and encoder.</li> <li>Check power cable</li> <li>connection. Refer to the</li> <li>diagram in Chapter 2.</li> <li>2. Turn off the power, and turn on</li> <li>again after 30 min. If the alarm</li> <li>still exists, there may be</li> <li>power module malfunction or</li> <li>noise consider the drive for</li> <li>test and repair.</li> </ul>                           |                        | 1                                              | 0                             | 1                       | 1               |

# 8-2 Troubleshooting of Alarm and Warning



| Alarm | Alarm Name                                                                                              |                                                                                                                                                                                                                                                                                              | Reset                    | Alarm Status Digital Output |                 |                 |                 |
|-------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|-----------------|-----------------|-----------------|
| Code  | and Description                                                                                         | Corrective Actions                                                                                                                                                                                                                                                                           | Method                   | CN1-25<br>BB/A3             | CN1-24<br>ST/A2 | CN1-23<br>PC/A1 | CN1-22<br>LM/A0 |
| 05    | Encoder ABZ<br>phase signal<br>error<br>Motor's encoder<br>failure or encoder<br>connection<br>problem. | <ol> <li>Check the motor's encoder<br/>connections.</li> <li>Check the encoder if short circuit,</li> </ol>                                                                                                                                                                                  | Reset<br>Power<br>Supply | 1                           | 0               | 1               | 0               |
| 06    | Encoder UVW<br>phase signal<br>error<br>Motor's encoder<br>failure or encoder<br>connection<br>problem. | poor solder joints or break.<br>3.Check the encoder signal terminals<br>CN2-1 and CN2-2. ( power cable 5v)                                                                                                                                                                                   | Reset<br>Power<br>Supply | 1                           | 0               | 0               | 1               |
| 07    | Multi-function<br>contact setting<br>error<br>Input/output<br>contacts function<br>setting error.       | <ol> <li>Check parameters Hn501~Hn513,<br/>trigger level selected by 2<sup>nd</sup> digit of<br/>Hn 501 to 513 should be the same<br/>for all inputs DI-1~DI-13.</li> <li>Check parameters setting of Hn514<br/>~ Hn517 should NOT be the same<br/>for outputs contact DO-1~DO-4.</li> </ol> | Reset<br>Power<br>Supply | 1                           | 0               | 0               | 0               |
| 08    | Memory Error<br>Parameter write-in<br>error                                                             | Disconnect all command cable then<br>re-cycle the power. If alarm still<br>occurs, it means the Drive was failure.                                                                                                                                                                           | Reset<br>Power<br>Supply | 0                           | 1               | 1               | 1               |
| 09    | Emergency Stop<br>When the input<br>contact point EMC<br>is activated.<br>Alarm 09 appears.             | <ol> <li>Disable Emergency stop signal<br/>input.</li> <li>Internal mal-function.<br/>Ensure that all connection are<br/>correct, refer to Chapter 2 Power<br/>and motor circuit diagrams<br/>connection.<br/>Control wiring diagrams.</li> </ol>                                            | Turn<br>ALRS(DI)<br>ON   | 0                           | 1               | 1               | 0               |
| 10    | over-current                                                                                            | <ol> <li>Check if the motor wiring U,V,W)and<br/>encoder wiring correct or not.</li> <li>Internal interference and<br/>mal-function. Ensure that all<br/>connection are correct ,refer to<br/>Chapter 2 Power and motor circuit<br/>diagrams.</li> </ol>                                     | Turn<br>ALRS(DI)<br>ON   | 0                           | 1               | 0               | 1               |

| Alarm<br>Code | Alarm Name<br>and Description                                                                 |                                                                                                                                                                                                                                                                                              | Reset                      | Alarm Status Digital Output |                 |                 |                 |
|---------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|-----------------|-----------------|-----------------|
|               |                                                                                               | Corrective Actions                                                                                                                                                                                                                                                                           | Method                     | CN1-25<br>BB/A3             | CN1-24<br>ST/A2 | CN1-23<br>PC/A1 | CN1-22<br>LM/A0 |
|               | Position error                                                                                | 1. Increase the position loop gain                                                                                                                                                                                                                                                           |                            |                             |                 |                 |                 |
| 11            | between Pulse<br>command and<br>encoder feed back<br>( position error) is<br>greater than the | <ul> <li>(Pn310 and Pn311) setting value.</li> <li>Increase in position tolerance value by (Pn307) for a better motor response.</li> <li>Extend the time of ac/deceleration or reduce load inertia in the permitted range.</li> <li>Check if the motor wiring (U,V,W) is correct.</li> </ul> | Turn<br>ALRS<br>(DI)<br>ON | 0                           | 1               | 0               | 0               |
|               | Motor over speed                                                                              | 1. Reduce the speed command.                                                                                                                                                                                                                                                                 |                            |                             |                 |                 |                 |
| 12            | Motor's speed is<br>1.5 times more<br>then motor's rated<br>speed.                            | <ol> <li>Electronic gear ratio is incorrect<br/>check and set correctly.</li> <li>Adjust speed loop gains (Sn211 &amp;<br/>Sn213) for a better motor<br/>response.</li> </ol>                                                                                                                | Turn<br>ALRS<br>(DI)<br>ON | 0                           | 0               | 1               | 1               |
|               | CPU Error                                                                                     | Turn off the power. Turn on again after                                                                                                                                                                                                                                                      |                            |                             |                 |                 |                 |
| 13            | Mal-function.                                                                                 | 30min. If error alarm still exists, this<br>may be due to external interference.<br>Refer to the chapter 2 Motor 、 power<br>cable and control signals connections.                                                                                                                           | Reset<br>Power<br>Supply   | 0                           | 0               | 1               | 0               |
|               | Drive disable                                                                                 | 1. Remove input contact signal                                                                                                                                                                                                                                                               |                            |                             |                 |                 |                 |
| 14            | CCWL & CWL                                                                                    | <ul> <li>CCWL or CWL.</li> <li>Check all input wiring for correct connections.</li> <li>For the selected High /Low logic potential settings refer to Section 5-6-1.</li> </ul>                                                                                                               | Turn<br>ALRS<br>(DI)<br>ON | 0                           | 0               | 0               | 1               |
| 15            | Itomporaturo                                                                                  | Over-load for a long duration will cause driver overheat, check and reset operation system.                                                                                                                                                                                                  | Turn<br>ALRS<br>(DI)<br>ON | 0                           | 0               | 0               | 0               |



### **Alarm Reset Methods**

- 1. carry out the suggestions below to reset Alarm.
  - (a) Reset by input signal: Once the cause of Alarm is rectified, disable SON signal (Switch off Servo ON), then activate input signal ALRS. Alarm condition should be cleared and the drive will be ready for operation. Reference 5-6-1 for setting SON and Alarm signal.
  - (b) Reset from Keypad : Once the cause of Alarm is rectified, disable SON signal (Switch off Servo ON), then press the buttons ▲ and ▼ at the same time to reset Alarm and the drive will be ready for operation.
- 2. Power reset: Once the cause of Alarm is rectified, disable SON signal (Switch off Servo ON) and re-cycling power.

Alarm condition can be reset and the drive will be ready for operation.

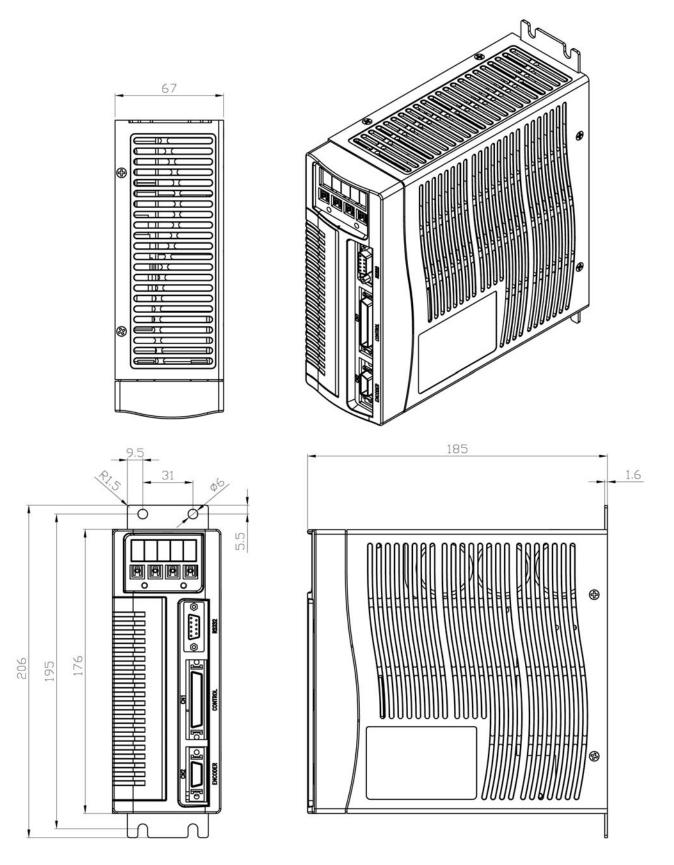
### Waning!

- 1) Before applying power rest, ensure that SON is off (SON signal is removed first) to prevent danger.
- 2) Ensure that the speed commands are removed before the alarm is reset, otherwise the motor may run abruptly once the alarm signal is reset.

# Chapter 9 Specifications

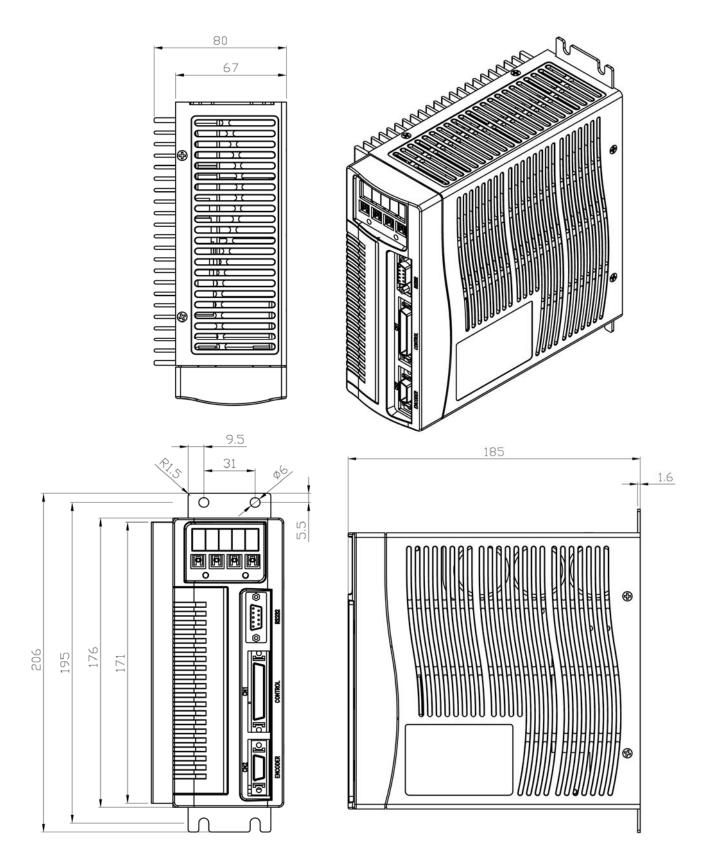
### 9-1 Specifications and Dimension for Servo Drives

| 5-1 opecifications and Dimension for berve Drives |                                   |                                                                                                                      |        |       |                          |       |  |  |
|---------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|--------|-------|--------------------------|-------|--|--|
| Servo n                                           | notor for TSTA-000                | 15C                                                                                                                  | 20C    | 30C   | 50D                      | 75D   |  |  |
| Servo moto                                        | or capacity [KW] Max.             | 0.4                                                                                                                  | 0.8    | 1.0   | 2.0                      | 3.0   |  |  |
|                                                   | itinuous output<br>urrent [A rms] | 3.5                                                                                                                  | 4.4    | 5.16  | 9.18                     | 14.00 |  |  |
| Max. output current [A rms]                       |                                   | 10.5                                                                                                                 | 13.8   | 15.50 | 27.50                    | 42.00 |  |  |
| loout                                             | Main Circuit                      | Single/Three Phase 170 ~ 253Vac                                                                                      |        |       | Three Phase 170 ~ 253Vac |       |  |  |
| Input<br>Dowor                                    | R/S/T                             | 50/60Hz ±5%                                                                                                          |        |       | 50/60Hz ±5%              |       |  |  |
| Power                                             | Control Circuit                   |                                                                                                                      | Single | 0Vac  |                          |       |  |  |
| Supply                                            | R/S                               | 50/60Hz ±5%                                                                                                          |        |       |                          |       |  |  |
| Co                                                | oling System                      | Natural Air Cooling                                                                                                  |        |       | Fan Cooling              |       |  |  |
| Control of Main Circuit                           |                                   | Three-phase full-wave rectification IGBT- SVPWM Control                                                              |        |       |                          |       |  |  |
| Control Mode                                      |                                   | Position(Pulse input), Position (Internal control), Speed, Torque, Position/Speed,<br>Speed/Torque, Position/Torque, |        |       |                          |       |  |  |
| R                                                 | Resolution of                     |                                                                                                                      |        |       |                          |       |  |  |
| Encoder Feedback                                  |                                   | Incremental type: 2000ppr / 2500ppr / 8192ppr                                                                        |        |       |                          |       |  |  |
| Regenera                                          | tion /Dynamic Brake               | Builted-in (brake Transistor and brake resistor)                                                                     |        |       |                          |       |  |  |
| Panel                                             | and operation key                 | 5 digital seven-segment display ; four function key.                                                                 |        |       |                          |       |  |  |
| Comm                                              | unication interface               | RS-232 / RS- 485 (Modbus protocol)                                                                                   |        |       |                          |       |  |  |



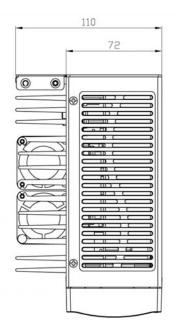

|          | Command Source                          |           | External Pulse Control / 16-Stage internal register control                                                   |  |  |  |  |
|----------|-----------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
|          |                                         |           | Positive/Negative Edge Trigger Type : CW/CCW, CLK+DIR, A Phase +                                              |  |  |  |  |
|          |                                         | Туре      | Phase                                                                                                         |  |  |  |  |
|          | Input<br>Pulse                          | Waveform  | Line Driver(+5V), Open Collector                                                                              |  |  |  |  |
|          |                                         | Max.      | 500 KHz(Line Driver) / 200 KHz(Open Collector)                                                                |  |  |  |  |
|          |                                         | Frequency | 1/200 < A/D < 200 / A 4 50000 D 4 50000 )                                                                     |  |  |  |  |
| Position | Electronice Gear                        |           | 1/200≦ A/B ≦200 ( A=1~50000, B=1~50000 )                                                                      |  |  |  |  |
| Control  | Position Smoothing                      |           | Ripple Time Constant 0~10sec                                                                                  |  |  |  |  |
| Mode     | Constant                                |           | (Time Constant 0~10 sec)                                                                                      |  |  |  |  |
|          | (Input Ripple Filtering)                |           |                                                                                                               |  |  |  |  |
|          | Final Position                          |           | 0 E0000 Bules                                                                                                 |  |  |  |  |
|          | Tolerance                               |           | 0~50000 Pulse                                                                                                 |  |  |  |  |
|          | (In Position)<br>Torque Limit Operation |           | Set by Parameters                                                                                             |  |  |  |  |
|          |                                         | •         |                                                                                                               |  |  |  |  |
|          | Feed Forward<br>Compensation            |           | Set by Parameters                                                                                             |  |  |  |  |
|          | Command Source                          |           | External Analog Command / 3-Stage internal Parameters                                                         |  |  |  |  |
|          | Analog voltage input                    |           | ±10Vdc                                                                                                        |  |  |  |  |
|          | range                                   |           | ±10VdC                                                                                                        |  |  |  |  |
|          | Input Impedance                         |           | Approx.10k ohm                                                                                                |  |  |  |  |
|          | Speed Control Range                     |           | 1 : 5000(Internal speed control) / 1 : 2000(External analog voltage control                                   |  |  |  |  |
|          | Speed fluctuation Rate                  |           | -0.03% or less at Load fluctuation 0 to 100% (at Rated Speed)                                                 |  |  |  |  |
|          |                                         |           |                                                                                                               |  |  |  |  |
| Speed    |                                         |           | 0.5% or less at ambient temperature fluctuation 0 $^\circ\mathrm{C}$ to 50 $^\circ\mathrm{C}$ (at Rated Speed |  |  |  |  |
| Control  | Zero Speed Command                      |           | 0~3000rpm                                                                                                     |  |  |  |  |
| Mode     | Limit of Speed up or                    |           | Line and speed up or down, time constant 0~50sec, smoothing time constant                                     |  |  |  |  |
|          | down                                    |           | 0~10sec                                                                                                       |  |  |  |  |
|          | P/PI switch                             |           | Switch by control Terminal Input                                                                              |  |  |  |  |
|          | Speed Reached                           |           | 0~3000rpm                                                                                                     |  |  |  |  |
|          | Servo Lock                              |           | Set by Parameters (Switch to lock on Position Command)                                                        |  |  |  |  |
|          | Torque Limit                            |           | Set by Parameters                                                                                             |  |  |  |  |
|          | Frequency Response<br>Characteristic    |           | Max. 400Hz                                                                                                    |  |  |  |  |

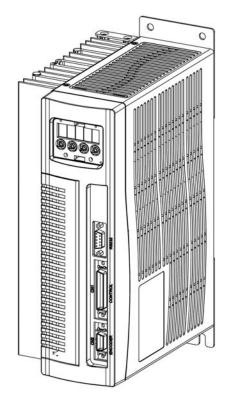


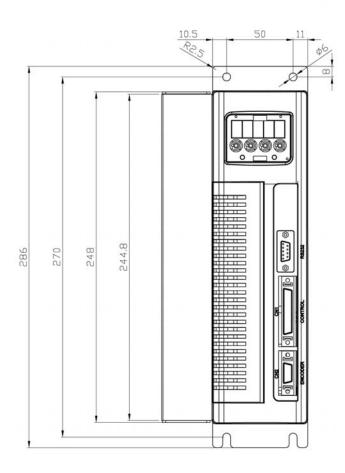

| <b>-</b>                  | Voltage Command                            |                                 | 0~±10Vdc / 0~±3000rpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|---------------------------|--------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Torque<br>Control<br>Mode | Input Impedance                            |                                 | About 10k ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                           | Torque Time<br>Constant                    |                                 | Time Constant 0~50sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                           | Position                                   | Output<br>Type                  | A, B, Z Line Drive Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                           | Output                                     | Encoder<br>Ratio                | 1 ~ 8192 Encoder Ratio (any Arbitrary Value)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Digital                   | DI[NPN/<br>PNP]<br>Input<br>Input<br>ports |                                 | Servo ON, P/PI switching, inhibit forward/reverse drive, error pulse clear, servo<br>lock, Emergency stop, internal speed choice, run mode switching, inhibit position<br>command, gain switching, electronic gear ratio setting, internal position<br>command choice, internal position command trigger, internal position command<br>pause, original point positioning, return to original point, external torque limit,<br>control model switching, forward/reverse switching, internal speedsetting, inhibit<br>pulse command |  |  |  |
|                           | DO<br>Output                               | Fix Output<br>To 4 Ports        | Reached Torques Limits, In Position, Forward/Reverse Drive Inhibit, Base Block,<br>Alarm Bit Output                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                           |                                            | Optional<br>Input to 4<br>ports | Servo Motor Warning, Servo Ready, Zero Speed, Positioning Completed, Speed<br>Reach, Brake interlock, Home Completed                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Analog                    | Analog Monitoring Output                   |                                 | Monitor Signal can be set by Parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Prote                     | Protection Function                        |                                 | Overcurrent, Over Voltage, Undervoltage, Overheat, Overload, Overspeed, Excessive deviation, decoder abnormal, rise again abnormal, Memory abnorma                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                           | Altitude<br>Install Location               |                                 | Sea level 1000m below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                           |                                            |                                 | Indoor (avoiding direct sunshine) no erosion air (avoiding oil gases, inflammable gas and dust)                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Environ-<br>ment          | Temperature                                |                                 | Operating Temperature 0~ 55 $^{o}C$ , storage Temperature: -20 ~ +85 $^{o}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                           | Humidity                                   |                                 | Operating, storage below 90% RH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                           | Vibration                                  |                                 | Below 0.5G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |

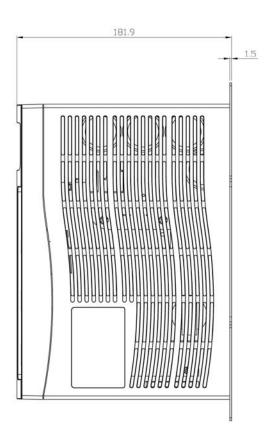
### **※** Dimension for TSTA-15 and TSTA-20







### **※** Dimension for TSTA-30




### **※** Dimension for TSTA-50 and TSTA-75









